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Abstract

This dissertation develops and applies a set of theoretical tools that allows us to

explicitly map the topologies of networks in the economy to different probability

distributions of interest. The first chapter, “The Distribution of Outcomes for a

Networked Economy,” develops a set of tools for mapping the topology of a network

to a probability distribution of possible outcomes for the economy. I adapt these

tools to study locally formed macroeconomic sentiment and how agents’ interaction

structure shapes the capacity for there to exist non-fundamental swings in aggregate

macroeconomic sentiment, with implications for our understanding of animal spirits.

I can apply these tools to analyze complex systems in closed form and to construct

error bounds about the paths of aggregated networked economies. In the second

chapter, “The Distribution of Multipliers in a Networked Economy,” there is a

policymaking actor who wants to increase the aggregate action in a networked

population of N agents. To achieve that goal, the policymaker implements a

policy targeting n < N agents. This second chapter studies how the topology

of agents’ interaction network shapes the distributions of possible policy-induced

aggregate actions and economic multipliers. I study a general networked setting and

three environments with network-based interaction: (1) strategic complements and

substitutes, (2) coordination and anti-coordination, and (3) production. Given n, for
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each environment, I map the network topology to distributions of possible resulting

aggregate actions and multipliers. The third chapter, “Comprehensively Stress

Testing the Economy,” addresses two main weaknesses in the Federal Reserve’s

stress testing approach: (1) the number of stress tests faced by each financial

institution is quite small, and (2) the Federal Reserve’s toolkit is not sufficiently

macroprudential. Employing a macroprudential approach, this chapter shows

how to massively increase the total number of stress tests without increasing the

computational burden. I generate classes of stress tests with large cardinalities;

for each class, I construct probability distributions that capture the full range of

possible balance sheet effects for individual financial institutions and the overall

financial system. This approach shows how the topologies of bipartite networks

linking financial institutions to assets shape stress tests’ effects.
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1.5 Graphs G (A) (top left) and G (Ā) (top center) for Example 1.2. Calcu-
lating a node’s weighted in-degree (top right) and the plot of average
weighted in-degrees, d�
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bFavg(Ā,N,n) (t), when f =

0.096, assuming that configurations of unemployment in the economy
are equally likely (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 233

ix



www.manaraa.com

A.4 Counter-cumulative distribution function (CCDF) of degrees for the
base graph (top left). CCDFs of out- and in-degrees for the network
of media-originating linkages when each media source publishes five
stories on the issue of jobs and unemployment (top right). CCDFs of
out- and in-degrees for the composite network (bottom). . . . . . . . 234

A.5 Counter-cumulative distribution function of average weighted in-
degrees for the composite network, assuming that each agent assigns
an equal weight to each of his out-linkages and each media source
publishes five stories on the issue of jobs and unemployment (left).
Distribution of the average local unemployment rate, G
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Introduction

In my dissertation, I develop and apply a set of theoretical tools that allows us to

explicitly map the topologies of networks in the economy to different probability

distributions of interest. Below, I discuss the three chapters of my dissertation in

greater detail.

In the first chapter, I develop a set of mathematical tools that allows us to map the

topology of an economic network to a probability distribution of possible outcomes

for the economy. To generate this mapping from network topology to probability

distribution, I focus on a class of economies that has the following three features:

(1) a population of N agents, each with a binary-valued attribute, (2) a network on

which these N agents are organized, and (3) decision-making by each networked

agent that depends on the local relative frequency of the attribute. I begin by

constructing in closed form the distribution of possible local relative frequencies of

the attribute given the topology of the underlying network and the attribute’s global

relative frequency. The topology of the underlying network determines the extent

to which the local relative frequency of the attribute can deviate from its global

relative frequency, thereby determining the extent to which the outcome of the

economy can deviate from a benchmark outcome. Then, given this distribution and

agents’ decision-making behavior, I construct the distribution of possible outcomes

for the economy. For realistic agent interaction structures featuring a very large

1
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population of agents, the distribution of outcomes is meaningfully non-degenerate.

I adapt the theoretical framework and mathematical tools developed in this work

to study locally formed macroeconomic sentiment and how agents’ interaction

structure shapes the capacity for there to exist non-fundamental swings in aggregate

macroeconomic sentiment, with implications for our understanding of animal spirits.

I can moreover apply these tools to analyze complex economic systems in closed

form and to construct error bounds about the paths of aggregated networked

economies.

In the second chapter, I study how the topology of agents’ interaction network

shapes the distribution of possible policy-induced aggregate actions and the distribu-

tion of possible policy-induced economic multipliers. There is a policymaking actor

who wants to increase the aggregate action in a networked population of N agents.

To achieve that goal, the policymaker implements a policy targeting n < N agents.

Since the agents in the population are networked and the actions that they take are

interdependent, the aggregate action and the policy-specific economic multiplier

crucially depend on which group of n agents gets targeted by the policy. In this

work, I therefore study how the topology of agents’ interaction network shapes the

corresponding probability distributions of possible aggregate actions and economic

multipliers for any given policy. I study a general networked setting and three

broad environments with network-based interaction: (1) strategic complements and

substitutes, (2) coordination and anti-coordination, and (3) production. I show that

the mathematics is the same across all three environments; the general networked

setting nests each of these three environments. Given n, for each environment, I map

the topology of agents’ interaction network to the distribution of possible resulting

aggregate actions and economic multipliers. The statistical features of these distribu-

tions provide crucial information about a policy’s efficacy, and I can compute these

2
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features in closed form. I can also rank networks so that the outside actor’s policy

is more effective the higher ranked the network. I show how non-trivial network

topologies generate negative multipliers. Across all three environments, there is

often a non-zero probability that the enacted policy will reduce the aggregate action

below its no-intervention level, and I can compute this probability in closed form.

In the third chapter, I study how the topologies of bipartite networks linking

financial institutions to assets shape stress tests’ effects on the financial system. In

response to the global financial crisis of 2008, the Federal Reserve decided to develop

and implement stress tests to assess the soundness of the financial system. Each

stress test involves crafting a potential real-world scenario and then quantifying the

scenario’s effect on both financial actors in the economy and the financial system as

a whole. There currently exist two weaknesses in the Federal Reserve’s stress testing

approach. First, the number of stress tests faced by each financial institution is quite

small, with many such stress test scenarios mimicking past historical events that are

not necessarily reflective of future situations. Second, the Federal Reserve’s toolkit

is not sufficiently macroprudential in nature, even though the financial crisis did

cause many central banks to nominally transition from a microprudential regulatory

approach to a macroprudential regulatory approach. In this third chapter, I tackle

these two issues. I show how to massively increase the number and types of possible

stress tests without increasing the computational burden. To do this, I generate

classes of stress tests with potentially very large cardinalities. For each class of stress

tests, I then construct in closed form probability distributions that capture the range

of possible balance sheet effects both for each individual financial institution and for

the entire financial system. The approach that I take towards increasing the number

of stress tests is fundamentally macroprudential.

3
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Chapter 1

The Distribution of Outcomes for a

Networked Economy

1.1 Introduction

In this chapter, we study an economy that has a population of agents organized

on a network. Given the features of the economy’s agents, the topology of the

underlying network, and agents’ decision-making behavior, we are interested in

the distribution of possible outcomes for the economy. The existence of a network

structure introduces complications into the economic system; the outcome of the

economy is inherently dependent on the topology of the underlying network, but it

is not immediately apparent how the topology shapes the distribution of outcomes.

This work provides that mapping from network structure to probability distribution.

The main contribution of this work is that it introduces mathematics that enables

us to derive in closed form the probability distribution of possible outcomes for the

economy from the topology of agents’ interaction network. The high-level innovation

of this work is that it develops a set of tools that mathematically links two fields:

4
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networks to statistics, or more precisely, networks to probability distributions. The

topology of the network directly affects the shape of the probability distribution

of outcomes, and this work makes that relationship explicit. We can carry out this

mapping from network to probability distribution for all feasible network topologies.

The economy in which the network is embedded also affects the mapping, and we

take the features of the economy into account.

To develop this mapping, we focus on a class of economic systems that has three

distinguishing characteristics. First, the economy has a population of N agents, each

of whom has a binary-valued attribute. Second, these N agents are organized on

a network. Third, each networked agent’s decision-making depends on the local

relative frequency of the attribute. Since agents have different positions on the

network, they potentially have different local relative frequencies of the attribute

arising from different network neighborhoods, and this can lead the agents to

make different decisions. Each economy in this class also has an aggregate feature.

That aggregate feature is the global relative frequency of the attribute. There are

n  N agents with the attribute’s unit value, so the global relative frequency of the

attribute is f = n
N . The exogenous objects in this work are the population size, the

underlying network structure, the global relative frequency of the attribute, and

agents’ decision-making behavior, while our endogenous object of interest is the

probability distribution of possible outcomes for the economy.

In this work, we are mapping the topology of agents’ interaction network to a

distribution of outcomes for the economy. In general, we have a non-degenerate

probability distribution because there is more than one possible outcome for the

economy. This multiplicity of outcomes arises because there are combinatorially

many possible configurations, or arrangements, of the binary-valued attribute

among agents consistent with the attribute’s global relative frequency. When

5
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f = n
N , there are (Nn ) possible configurations. We can imagine that the outcome

of the economy changes with the particular configuration of the attribute. As the

configuration changes, a different subset of agents has the attribute’s unit value,

which generates a potential adjustment to the local relative frequency of the attribute

for each agent. Agents choose actions based on that local relative frequency of

the attribute, so as the configuration changes, we potentially have a shift in agents’

actions, which leads to a different outcome for the economy.

The two objects that we focus on in this work are the local relative frequency of

the attribute and the outcome for the economy. Holding fixed the attribute’s global

relative frequency, there are combinatorially many possible configurations and for

each configuration, there is an associated local relative frequency of the attribute.

Therefore, given the attribute’s global relative frequency and the structure of the

underlying network, we can construct an entire probability distribution of possible

local relative frequencies of the attribute. We refer to the distribution of possible local

relative frequencies of the attribute as a precursor distribution because its construction

precedes our construction of the distribution of possible outcomes for the economy.

Once we have computed the precursor distribution, we can then construct the

distribution of possible outcomes for the economy given agents’ decision-making

behavior. Our precursor distribution characterizes the extent to which the attribute’s

local relative frequency deviates in either direction away from its global relative

frequency. The capacity for such variation in the attribute’s local relative frequency

depends on the underlying network structure, and it determines the extent to which

the outcome of the economy can deviate from a benchmark outcome.1 If we have

sufficient variation in the local relative frequency of the attribute, then there is an

1The benchmark outcome is the one that results if we ignore the underlying configuration and
only take into account the aggregate properties of the system, namely the attribute’s global relative
frequency.

6
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entire non-degenerate distribution of possible outcomes for the economy.

We are interested in characterizing the distribution of possible outcomes for

the economy, but we have not yet made explicit what an outcome is exactly. The

outcome for an economy is situational. For example, it might be the aggregate

action taken by all agents in the population, or it might instead be the action of a

single agent of interest. Alternatively, the outcome of the economy might follow

from the outcome of an event; for instance, it might follow from the outcome of

an economy-wide political election with two possible candidates. In such a setting,

there would be two possible outcomes for the economy, and the probability that

each outcome occurs is equal to the probability that the corresponding candidate

wins the election.

The main technical contributions of this work are as follows. We characterize

the shape and properties, including the higher-order statistical features, of our

precursor distribution for every feasible network structure, population size, and

global prevalence of the binary-valued attribute. We determine those network

topologies for which the local relative frequency of the attribute is invariant to

configuration, which makes the precursor distribution degenerate. More generally,

we statistically characterize the precursor distribution when every configuration is

equally likely and when every configuration occurs with some arbitrary probability.

Once we have characterized this distribution of possible local relative frequencies of

the attribute in full generality, we then study the distribution of possible outcomes

for the economy. For certain classes of agent actions, we can provide a closed-form

representation of this distribution of possible outcomes. We can characterize this

distribution of outcomes for all feasible network structures, population sizes, and

global prevalences of the attribute in the population. To the extent that there is

variation in the local relative frequency of the attribute across configurations, there

7
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can then be significant variation in the economy’s outcome, holding f fixed.

When our probability distribution of possible outcomes is non-degenerate, mean-

ing that the outcome of the economy varies with configuration, we consider the

economic system to be configuration dependent. Configuration dependence enables

the existence of phenomena that would otherwise not occur if we only considered the

system’s aggregate features. It adds richness to our models of the economy because

there is an entire distribution of possible outcomes consistent with our uniquely

valued aggregate feature. If we ignored the inherent configuration dependence of

the economy, then there would only be one possible outcome.

The tools that we develop in this work enable us to form insights into: (1)

complex economic systems and (2) aggregated economies. First, the mathematical

machinery allows us to unpack complex systems, and more specifically, complex

economic systems featuring network-based agent interaction. Economies with agent-

based interaction are quite complicated, as there are myriad ways that these systems

can possibly evolve. The tools developed in this work enable the closed-form

analysis of such complex economic systems. We can collapse the complexities of

agent-based interaction into a simple probability distribution that characterizes how

the system will evolve.

Second, these tools allow us to assess aggregate treatments of economic systems

and quantify their incompleteness. The class of models that we study in the present

work has features that enable direct comparison with aggregate models of the

economy. Here, we have a population of N agents whose decision-making behavior

can be aggregated, and there is an aggregate feature, f , built up from the attributes

of the underlying set of agents. Aggregate models of the economy similarly feature

a population of N agents whose actions can be aggregated, and the corresponding

representative agent makes decisions based on the aggregated characteristics of
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the system. In such aggregate models of the economy, the action taken by the

representative agent given the system’s aggregate characteristics is unique; there is a

single outcome. However, for the class of models in the present work, even though

the economy has a parallel structure, there is an entire non-degenerate distribution

of possible outcomes for the economy that is consistent with the system’s uniquely

valued aggregate feature, f .

This work shows how aggregate treatments of economic systems can lead to

characterizations that are, in general, incomplete. Rather than the aggregate eco-

nomic system having a unique outcome determined by the system’s aggregate

features, there is instead an entire distribution of possible outcomes centered about

that original benchmark outcome. Using the tools developed in this work, we can

introduce a configurational error bound and place that error bound about the bench-

mark outcome of the aggregate economy to account for the multiplicity of possible

outcomes. In particular, we construct this error bound for aggregated systems with

networked agents who make local decisions. The size of this error bound depends

on the underlying network’s topology. By incorporating this error bound, we allow

for a more complete and a more nuanced understanding of the phenomena that

aggregate models of the economy seek to study. As a result, two systems with the

same aggregate features can evolve differently due to differences in their underlying

configurations; the configurational error bound that we construct accounts for this

variation in the two economic outcomes relative to each other and relative to the

benchmark outcome.

We use these theoretical findings to study locally formed macroeconomic sen-

timents, election outcomes, and animal spirits. In our applied setting, the binary-

valued attribute denotes employment status, and each agent makes a voting decision

that depends on his or her local unemployment rate. This local unemployment rate

9
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is a proxy for individual macroeconomic sentiment and the average local unemploy-

ment rate is a proxy for aggregate macroeconomic sentiment. In our model, the

fundamentals of the economy, namely the economy’s global unemployment rate,

alone favor the election of one candidate with certainty. However, if the overall level

of macroeconomic sentiment in the economy sufficiently varies with the underlying

configuration of unemployment, then there can be more than one possible election

outcome and more than one possible outcome for the economy. In a setting with

137.5 million agents, which is the number of voters in the 2016 U.S. presidential elec-

tion, we find that the distribution of average local unemployment rates is strongly

non-degenerate. The variation in this average local unemployment rate is sufficiently

large that it can actually mimic variations in business cycle conditions. As a result,

the election outcome depends on the particular configuration of unemployment.

Such non-degeneracy of the distribution of outcomes for very large N emerges from

both high variance of in-degrees and heavy-tailedness of weighted in-degrees for

the calibrated social observation network.

By assuming that agents form macroeconomic sentiment from their local unem-

ployment rates, we are able to quantify the extent to which aggregate sentiment

is positive or negative given the economy’s fundamentals; aggregate sentiment is

positive, that is, there are waves of optimism, when the average local unemploy-

ment rate is less than the global unemployment rate, while aggregate sentiment

is negative, that is, there are waves of pessimism, when the average local unem-

ployment rate is greater than the global unemployment rate. We can quantify this

deviation in the average local unemployment rate from the actual unemployment

rate and therefore quantify deviations in aggregate sentiment away from a level that

is commensurate with the economy’s fundamentals. We show how the underlying

interaction structure among agents in the economy shapes the capacity for there
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to exist these non-fundamental swings in aggregate sentiment for all population

sizes. We thus offer a mechanism for the formation of individual and aggregate

macroeconomic sentiment that essentially microfounds animal spirits.

1.1.1 Relation to the Literature

This work interfaces with four different strands of the literature: (1) complex

economic systems, (2) networks, (3) aggregation, and (4) macroeconomic sentiment.

Research in the area of complex economic systems includes Granovetter (1978),

Brock and Durlauf (2001a), Bisin et al. (2004), and Horst and Scheinkman (2004).

These works all feature some form of agent interaction, namely agents choosing

actions that depend on the actions of other agents. These works take great care to

establish the existence of equilibria in such settings. For these works, the equilibrium

outcome is the object of study. The present work meanwhile has a different focus;

the object of interest in the present work is the distribution of possible outcomes for

the system.

This work contributes to research on networks by developing a set of tools that

allows us to mathematically link the field of networks to the field of statistics, and

in particular, the area of probability distributions. This work is innovative in that

regard. We can also relate the present work to recent research on network-based

social learning. Recent papers in that area include Gale and Kariv (2003), Golub

and Jackson (2010), Acemoglu, Ozdaglar, and ParandehGheibi (2010), Acemoglu,

Dahleh, Lobel, and Ozdaglar (2011), Banerjee, Breza, Chandrasekhar, and Mobius

(2016), Harel et al. (2017), and Chandrasekhar, Larreguy, and Xandri (2018). The

present work provides theoretical results that enhance our understanding of DeGroot

learning. Through the tools developed in the present work, we are able to construct

the entire distribution of possible consensus learned values, including the higher-
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order features of this distribution, for any population size, and we can determine

how the topology of the network shapes the capacity for there to be learning and

mis-learning.

Research in the area of aggregation tends to examine whether aggregate fluc-

tuations in output can arise from micro-level shocks, or if an aggregate parameter

is needed in models of the macroeconomy to generate sufficiently sizable aggre-

gate fluctuations. Papers include Bak, Chen, Scheinkman, and Woodford (1993),

Scheinkman and Woodford (1994), Horvath (1998, 2000), Gabaix (2011), and Ace-

moglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012). These papers offer different

mechanisms that slow the rate at which the law of large numbers applies. They

study the role of sectoral production networks, granularity in firm size, and non-

convexities in production technologies coupled with local interaction among sectors

to generate adequate fluctuations in output that persist even as the economy be-

comes increasingly disaggregated. Recently, research in this area has also been

trying to study how microeconomic shocks shape the higher-order features of the

output distribution; recent work includes Acemoglu, Ozdaglar, and Tahbaz-Salehi

(2017) and Baqaee and Farhi (2018). The present work tackles this issue of aggrega-

tion as well. It examines the extent to which the distribution of possible outcomes for

the economy remains non-degenerate in a large-N setting. We develop theoretical

results that characterize the variance and the CDF of this distribution, including its

higher-order features, for every possible population size and network topology, in-

cluding the limit as N ! •. We can explicitly examine how the topological features

of the interaction network shape the capacity for the distribution of outcomes for

the economy to remain approximately non-degenerate, even for large N.

Recent research in the area of macroeconomic sentiment includes Barsky and

Sims (2012), Angeletos and La’O (2013), Benhabib, Wang, and Wen (2015), Huo
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and Takayama (2015), Acharya, Benhabib, and Huo (2017), Angeletos, Collard,

and Dellas (2017), and Milani (2017). In the theoretical domain, these works

define mathematically what it means for economies to have sentiment, consumer

confidence, and/or animal spirits. In the empirical domain, the literature has

tried to determine the extent to which realistically calibrated shocks to sentiment

and/or consumer confidence can impact and generate reasonable fluctuations in

macroeconomic aggregates. The present work interacts with the existing literature

by providing a simple mechanism for the formation of macroeconomic sentiment

among agents. This mechanism allows us to quantify the extent to which individual

sentiment and aggregate sentiment deviates from a level that is commensurate

with economic fundamentals. The present work also shows how the underlying

interaction structure among agents shapes the capacity for there to exist non-

fundamental swings in aggregate sentiment.

1.1.2 Outline of Chapter

Section 1.2 provides notation and definitions, introduces the class of problems

that we later mathematically solve, and works through two illustrative examples.

Section 1.3 applies this class of problems towards understanding macroeconomic

sentiments and political election outcomes. It studies how there can be sizable

configuration-induced variations in macroeconomic sentiment in a large-N economy

for fixed economic fundamentals and the resulting impact on election outcomes.

After exploring this application, Section 1.4 begins to develop the mathematics

that enables us to solve our class of problems. Section 1.5 first characterizes the

null setting in which the particular configuration of the attribute among agents

is irrelevant. It identifies those conditions for which the distribution of possible

local relative frequencies of the attribute is either degenerate or invariant to config-
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uration. Sections 1.6 and 1.7 then present the tools that enable us to characterize

the distribution of possible local relative frequencies of the attribute when it is

non-degenerate and every configuration is either equally or not equally likely to

occur. Section 1.8 studies the distribution of possible outcomes for the economy

given agents’ decision-making behavior, and Section 1.9 concludes.

1.2 Model

We begin by introducing the notation and definitions that will be used throughout

this paper. We then proceed to develop our guiding theoretical framework, highlight-

ing the objects of interest that emerge. We conclude this section by working through

two examples that make the theoretical framework and the objects of interest even

more precise in an applied setting.

1.2.1 Notation and Definitions

The cardinality of a set X is |X |. A multiset is an object similar to a set, but it allows

for multiple instances of each of its elements. Vector x is a column vector by default.

The ith element of vector x is xi or [x]i. The ijth element of matrix X is [X]ij, the ith

row of X is [X]i⇤ and the jth column of X is [X]⇤j. The identity matrix is I, the column

vector whose elements all equal 1 is 1, and the unit vector ei has [ei]j = 1 for i = j

and [ei]j = 0 otherwise. Matrix X is row-stochastic if X1 = 1 and all matrix elements

of X are non-negative. Matrix X is doubly stochastic if it is both row-stochastic and

column-stochastic, that is, X1 = 1, XT1 = 1, and all matrix elements of X are

non-negative. Non-negative matrix X is primitive if there exists an integer q � 1 such

that [Xq]ij > 0 for all matrix elements in Xq. x (N) ⇠ y (N) w.h.p. (that is, x (N) is

asymptotically equivalent to y (N) with high probability) if Pr
⇣

x(N)
y(N) ! 1

⌘

! 1 as
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N ! •. x (t) = o (y (t)) if and only if, for every a > 0, there exists a real-valued

constant t0 such that |x (t)|  a |y (t)| for all t � t0. x (t) = w (y (t)) if and only if,

for every a > 0, there exists a real-valued constant t0 such that |x (t)| � a |y (t)|
for all t � t0. Graph G is an ordered pair G = (V , E) consisting of a set of vertices

(nodes) V and a set of edges E . �x, y, ex,y
� 2 E is an edge between nodes x and

y with weight ex,y. If the graph is directed, the edge is oriented from node x to

node y; otherwise, the edge is not oriented. G (X) refers to an unweighted graph

with unweighted adjacency matrix X, whose non-zero elements are [X]ij = 1, and

G �X̄� refers to a weighted graph with weighted adjacency matrix X̄, whose non-zero

elements are
⇥

X̄
⇤

ij = ei,j.

1.2.2 Theoretical Framework

We now develop the theoretical framework that motivates and guides this chapter.

Consider an economic system with N total networked agents. Each agent i has

a binary-valued attribute, bi, with either bi = 0 or bi = 1; n  N agents have

bi = 1, the attribute’s unit value. The global relative frequency of the attribute’s unit

value in the total population of agents is f = n
N . This quantity, f , is the economy’s

aggregate feature. In the rest of this chapter, we refer to f as the attribute’s global

relative frequency. Given f , there is a particular configuration, or arrangement,

of the binary-valued attribute among agents in the economy. We define such a

configuration as follows:

Definition 1.1 A configuration b ⌘ b (N, n) of a binary-valued attribute in a population

of N agents is an allocation of the attribute so that bi 2 {0, 1} for all i 2 {1, . . . ,N} and

bT1 = n.

A configuration b ⌘ b (N, n) of the binary-valued attribute among agents in the
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population is an allocation such that every agent has the attribute’s zero or unit

value, and the global relative frequency of the attribute in the population is f = n
N .

We construct the N ⇥ 1 configuration vector by taking each agent’s attribute, bi, and

stacking this value for all agents in the population. From this vector, we can identify

those agent indices with bi = 1. Two configurations b, b0 are distinct if and only if

b 6= b0 because the agent indices with bi = 1 differ across these two configurations.

We denote B (N, n) as the set of all possible configurations consistent with f = n
N ,

and the cardinality of this set is |B (N, n)| = (Nn ).

Agents in this setting interact, and a network and its accompanying adjacency

matrices capture these patterns of interaction.2 The N ⇥ N unweighted adjacency

matrix A captures the existence of linkages among agents; [A]ij = 1 if there is an

edge from agent i to agent j. Meanwhile, the N ⇥ N weighted adjacency matrix Ā

captures the weights that agents assign to these linkages. [Ā]ij = ei,j if the network

has edge
�

i, j, ei,j
�

from agent i to agent j with edge weight ei,j. Agents allocate

non-negative weight to each of their linkages, with the total weight allocated by a

particular agent summing to 1; for an agent i, we therefore have ÂN
j=1 [Ā]ij = 1.3

This summation holds for all agents i 2 {1, . . . ,N}, which makes matrix Ā row-

stochastic.

We are interested in the local relative frequency of the attribute’s unit value,

x (Ā,b,N, n), for every configuration b (N, n) 2 B (N, n). In the rest of this work,

we refer to x (Ā,b,N, n) as the attribute’s local relative frequency. This quantity

depends on agents’ interaction structure, Ā, it depends on the global frequency, n,

of the attribute’s unit value in the population of size N, and it depends on which

2In this chapter, networks can feature self-loops but not multiple edges.

3Chapters 2 and 3 of this dissertation relax the assumption that edge weights are non-negative
and that the total allocated weight must sum to 1.
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subset of agents on the network actually has that unit value, b. Holding f fixed, as

the configuration of the attribute adjusts and a different subset of agents has the

attribute’s unit value, we can imagine that x (Ā,b,N, n) changes as well. Figure 1.1

plots the global and local relative frequencies of a binary-valued attribute across

three different configurations. For all of these configurations, the attribute’s global

relative frequency is the same: f = 0.50. However, the local relative frequency of the

attribute varies; it depends on which subset of agents actually has the attribute’s unit

value. For each configuration, this local relative frequency can also meaningfully

deviate from the attribute’s global relative frequency. For example, when agents

3 and 4 have the attribute, the local relative frequency of the attribute deviates

positively, while when agents 1 and 2 have the attribute, the local relative frequency

of the attribute deviates negatively. Scalar quantity x (Ā,b,N, n) is an abstract

object; we are only able to directly compute this object once we assign to it a specific

interpretation.

THEORETICAL FRAMEWORK AND EXAMPLES

• Interested in the local relative frequency of the attribute’s unit value,

• Holding f fixed, as configuration adjusts, can change as well
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Figure 1.1: The global relative frequency of the attribute and the local relative frequency of the
attribute across three different configurations.

Given x (Ā,b,N, n) for every configuration b (N, n) 2 B (N, n), we then con-

struct the distribution of possible local relative frequencies of the attribute. We define
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random variable X (Ā,N, n) whose realizations are the configuration-specific quan-

tities x (Ā,b,N, n). We are interested in the distributional features of X (Ā,N, n).

GX(Ā,N,n) (t) is the CDF of X (Ā,N, n) and gX(Ā,N,n) (t) is the PMF of X (Ā,N, n). If

every configuration is equally likely to occur:

GX(Ā,N,n) (t) =
1

|B (N, n)| Â
b(N,n)2B(N,n)

1x(Ā,b,N,n)t, (1.1)

where GX(Ā,N,n) (t) represents the fraction of configurations for which

x (Ā,b,N, n)  t. GX(Ā,N,n) (t) is the precursor distribution from which we then

proceed to construct the distribution of possible outcomes for the economy.

If the total number of configurations, |B (N, n)|, is small, we can construct

GX(Ā,N,n) (t) given f by computing x (Ā,b,N, n) configuration by configuration.

In general, though, for |B (N, n)| small or large, we can construct GX(Ā,N,n) (t) by

decomposing x (Ā,b,N, n) into two constituent quantities:

x (Ā,b,N, n) = [w (Ā)]T b (N, n) .

The first quantity is a fixed, network-derived vector of agent weights, w (Ā), and

the second quantity is the particular configuration b (N, n) of the attribute among

agents. The topology of the underlying network determines the values of w (Ā).

We can think of w (Ā) as a vector that captures each agent’s effective representation

in the population. The higher an agent’s weight, the higher the attribute’s local

relative frequency in the population when that agent possesses the attribute’s unit

value. To further see how x (Ā,b,N, n) decomposes into w (Ā) and b (N, n), note

the following brief example: Suppose that we are interested in the relative frequency

of the attribute, x (Ā,b,N, n), for agent j in his immediate network neighborhood.
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We have that

x (Ā,b,N, n) =
1

|N+(j)| Â
i2N+(j)

bi, (1.2)

where N+(j) is agent j’s out-neighborhood on the network, that is, N+(j) is the

set of agents i 2 {1, . . . ,N} for which [Ā]ji > 0. Re-writing this expression in

Equation 1.2, we have:

x (Ā,b,N, n) =
N

Â
i=1

[w (Ā)]i bi, (1.3)

with [w (Ā)]i = 0 if i /2 N+ (j) and [w (Ā)]i =
1

|N+(j)| if i 2 N+ (j). Agents not in

agent j’s neighborhood receive zero weight, while agents in agent j’s neighborhood

receive equal positive weight; the total weight allocated across all agents sums to 1.

The decomposition of x (Ā,b,N, n) in Equation 1.3 indeed holds more gener-

ally, where we assume that each individual agent’s weight is non-negative and

[w (Ā)]T 1 = 1. Depending on the particular setting and the particular interpre-

tation of x (Ā,b,N, n), w (Ā) gets derived differently. However, it is this fixed

network-derived vector of agent weights coupled with the combinatorially many

possible configurations b (N, n) 2 B (N, n), given f , from which we can construct

and compute the precursor distribution, GX(Ā,N,n) (t). This decomposition allows

us to compute the distributional features of X (Ā,N, n) and the CDF GX(Ā,N,n) (t)

even when |B (N, n)| = (Nn ) is large.

Figure 1.2 illustrates the theoretical framework that forms the basis for this

chapter. We start off with an economic system that has a population of networked

agents and an aggregate feature, namely the global relative frequency of the attribute.

We assign a weight to each agent in the population and therefore derive from the

underlying network a vector of agent weights. There are combinatorially many

possible configurations of the attribute consistent with the system’s aggregate feature.
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THEORETICAL FRAMEWORK AND EXAMPLES
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Figure 1.2: Theoretical framework.

We can compute the local relative frequency of the attribute for each configuration,

given agents’ weights. We then construct our precursor distribution of possible local

relative frequencies of the attribute, and given agents’ decision-making behavior, we

construct the distribution of possible outcomes for the economic system.

1.2.3 Two Examples

We now walk through two examples that make both the theoretical framework and

the quantities of interest more precise. Let’s begin by assigning an interpretation

to the binary-valued attribute. Let the binary-valued attribute denote employment

status, with agent i unemployed if bi = 1, and bi = 0 otherwise. The global

unemployment rate is f = n
N ; in the language from before, f is the global relative

frequency of the unemployment attribute. The agents are organized on a social

observation network G (Ā) from which they observe each other’s employment

statuses and assign a weight to each of their observations. We are interested in

determining the distribution of possible average local unemployment rates. This

distribution of average local unemployment rates is a real-world manifestation
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of the distribution of possible local relative frequencies of the attribute from the

previous subsection. We are examining possible local relative frequencies of the

unemployment attribute, and more specifically, possible population-averaged local

relative frequencies of the unemployment attribute for a given global unemployment

rate.

Given the particular configuration of unemployment in the economy, we compute

the average local unemployment rate, bfavg (Ā,b,N, n), as follows:

bfavg (Ā,b,N, n) =
1
N
1Tbf (Ā,b,N, n) =

1
N
1TĀb (N, n) =

⇥

d�
w (Ā)

⇤T b (N, n) .

bf (Ā,b,N, n) is the N ⇥ 1 population vector of agents’ local unemployment rates.

Each agent’s local unemployment rate is calculated by determining the weighted

relative frequency of the unemployment attribute in that agent’s immediate out-

neighborhood. The local unemployment rate for agent i is therefore bfi (Ā,b,N, n) =

[Ā]i⇤ b (N, n), which makes the population vector of local unemployment rates

bf (Ā,b,N, n) = Āb (N, n). The relevant network-derived vector of agent weights

is d�
w (Ā) = 1

N ĀT1, the vector of average weighted in-degrees. Note the parallel

between the decomposition of bfavg (Ā,b,N, n), the average local unemployment

rate, and x (Ā,b,N, n), the local relative frequency of the attribute:

bfavg (Ā,b,N, n) =
⇥

d�
w (Ā)

⇤T b (N, n) and

x (Ā,b,N, n) = [w (Ā)]T b (N, n) .

Here, the random variable of interest is bFavg (Ā,N, n) with configuration-specific

realization bfavg (Ā,b,N, n), and CDF G
bFavg(Ā,N,n) (t) and PMF g

bFavg(Ā,N,n) (t), while

in the previous subsection, the random variable of interest was X (Ā,N, n) with

configuration-specific realization x (Ā,b,N, n), and CDF GX(Ā,N,n) (t) and PMF

gX(Ā,N,n) (t). There is an exact parallel between the computation of G
bFavg(Ā,N,n) (t)
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and g
bFavg(Ā,N,n) (t), and the respective computation of GX(Ā,N,n) (t) and gX(Ā,N,n) (t).

When every configuration is equally likely to occur,

G
bFavg(Ā,N,n) (t) =

1
|B (N, n)| Â

b(N,n)2B(N,n)
1
bfavg(Ā,b,N,n)t

which exactly parallels the expression for GX(Ā,N,n) (t) in Equation 1.1.

We can now proceed to our first example, in which we study the relationship

between agents’ interaction network and the distribution of possible average local

unemployment rates:

Example 1.1 (Average Local Unemployment Rate, N = 4) Consider an economy with

N = 4 agents and an unemployment rate of f = 0.25. Agents’ social observation network,

from which they observe each others’ employment statuses, is depicted in Figure 1.3. The

corresponding row-stochastic weighted adjacency matrix, Ā, is immediately below. Assuming

that each configuration of unemployment in the economy is equally likely, we can compute

the distribution, g
bFavg(Ā,N,n) (t), of possible average local unemployment rates:

Ā =

0

B

B
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B

B

B

B

@
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>
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>

>

>

>

>

>

>

>

:

0.25 if bFavg (Ā,N, n) = 0.0625

0.25 if bFavg (Ā,N, n) ⇡ 0.146

0.25 if bFavg (Ā,N, n) ⇡ 0.271

0.25 if bFavg (Ā,N, n) ⇡ 0.521

.

In this example, there are four configurations of unemployment in the economy

consistent with f = 0.25: e1, e2, e3, and e4 2 R4. For each configuration, given that

bf (Ā,b,N, n) = Āb (N, n), we can compute the average local unemployment rate:

For b = e1, bf (Ā,b,N, n) =
✓

0.25 0 0 0
◆T

and bfavg (Ā,b,N, n) = 0.0625.

For b = e2, bf (Ā,b,N, n) =
✓

0.25 0.33 0 0
◆T

and bfavg (Ā,b,N, n) ⇡ 0.146.
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Figure 1.3: Graphs G (A) (top left) and G (Ā) (top right) from Example 1.1. The four possible
configurations, b (N, n), of the binary-valued attribute given that f = 0.25 (middle). The probability
distribution, g

bFavg(Ā,N,n) (t), of possible average local unemployment rates given that f = 0.25
(bottom).

For b = e3, bf (Ā,b,N, n) =
✓

0.25 0.33 0.50 0
◆T

and bfavg (Ā,b,N, n) ⇡ 0.271.

For b = e4, bf (Ā,b,N, n) =
✓

0.25 0.33 0.50 1.00
◆T

and bfavg (Ā,b,N, n) ⇡ 0.521.

From these values, we can then construct the probability distribution g
bFavg(Ā,N,n) (t),

which is depicted in Figure 1.3. This probability distribution is our main object of in-

terest, and most of the present work is devoted to understanding and characterizing

this type of object.

The topology of agents’ observation network in Example 1.1 generates wide

variation in individual agents’ local unemployment rates for a particular configu-
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ration of unemployment in the economy, and it generates variation in individual

agents’ local unemployment rates across configurations. The latter variation arises

from agents having different effective representations in the population, or in this

particular setting, different levels of observability. Agent 1 has a low average

weighted in-degree, and therefore a low agent weight and poor observability, so

when he is unemployed, agents 1, 2, 3, and 4 respectively have local unemployment

rates of 25 percent, 0 percent, 0 percent, and 0 percent; agent 4 meanwhile has a

high average weighted in-degree, and therefore a high agent weight and strong

observability, so when he is unemployed, agents 1, 2, 3, and 4 respectively have

local unemployment rates of 25 percent, 33 percent, 50 percent, and 100 percent.

This variation in the observability of agents causes the average local unemploy-

ment rate to change with configuration. When agent 1 is unemployed, the average

local unemployment rate is 6.25 percent, while when agent 4 is unemployed, the

average local unemployment rate is 52.1 percent. These values for the average

local unemployment rate also strongly deviate from the actual unemployment rate

of 25 percent. If agents form macroeconomic sentiment from their local rates of

unemployment, then depending on the particular configuration of unemployment

in the economy, agents on average might feel that the economy is doing much better

or worse than its fundamentals would otherwise suggest. If the outcome of the

economy somehow depends on this average local unemployment rate, and this aver-

age local unemployment rate substantially varies with the particular configuration

of unemployment in the economy, then we consider the economy to be strongly

configuration-dependent.

We can trace different pathways for the average local unemployment rate as

the global unemployment rate evolves. Figure 1.4 features four potential pathways

for the average local unemployment rate; Figure 1.4 also plots, in the background,
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Figure 1.4: Possible average local unemployment rates, bfavg (Ā,b,N, n), given the global unem-
ployment rate, f , and potential pathways (A-D) for the average local unemployment rate as the global
unemployment rate evolves.

the set of all possible average local unemployment rates for each feasible level

of unemployment in the economy. Changes in configuration can accommodate

different phenomena that would otherwise not emerge from just the aggregate

properties of the system. Path (B) illustrates how there can be dramatic swings in

sentiment for a small adjustment to the the global unemployment rate, the system’s

aggregate feature; as the unemployment rate increases from 25 percent to 50 percent,

there is a 72.9-percentage-point increase in the average local unemployment rate.

Path (C) illustrates how sentiment can move in a direction opposite to that of

fundamentals. Even though the unemployment rate is declining from 50 percent to

25 percent, the average local unemployment rate increases 31.3 percentage points.

The decrease in unemployment would suggest that the economy is improving,

but the agents in the population on average locally observe the economy to be

worsening. Paths (A) and (D) illustrate hysteresis within the economy. Suppose that

the economy takes path (A) as the unemployment rate increases and it takes path

(D) as the unemployment rate decreases. Even though the economy is traversing
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the same set of unemployment rates, it can experience different average local

unemployment rates. Configuration dependence of the economic system enables

the existence of such phenomena.

In the second example, we study the distribution of possible average local

unemployment rates, g
bFavg(Ā,N,n) (t), in a setting with a larger sample population:

Example 1.2 (Average Local Unemployment Rate, N = 15) Consider an economy with

N = 15 agents and an unemployment rate of f = 0.20. Agents’ social observation network,

G (A), is formed from preferential attachment, with a self-loop for every node (see Figure 1.5).

Assuming that agents equally weight each of their observations and each configuration of

unemployment in the economy is equally likely, the distribution of possible average local

unemployment rates, g
bFavg(Ā,N,n) (t), is depicted at the bottom right of Figure 1.5.

In this second example, there are (153 ) = 455 possible configurations of

the unemployment attribute among agents in the population consistent with a

20-percent unemployment rate. As in the first example, we compute the average

local unemployment rate configuration by configuration, and we then construct

the accompanying probability distribution. We observe substantial heterogeneity

in agents’ average weighted in-degrees, d�
w (Ā) = 1

N ĀT1, as can be viewed in the

bottom left of Figure 1.5. With such heterogeneity in agents’ weights, individual

agents’ contributions to the average local unemployment rate measurably differ

when they become unemployed. As a result, the probability distribution of possible

average local unemployment rates has sizable variance. For a 20-percent unemploy-

ment rate, the average local unemployment rate can vary from 11.9 percent to 33.1

percent. If the local unemployment rate is relevant for agent decision-making, the

economy is strongly dependent on the underlying configuration of unemployment

in the population.
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Figure 1.5: Graphs G (A) (top left) and G (Ā) (top center) for Example 1.2. Calculating a node’s
weighted in-degree (top right) and the plot of average weighted in-degrees, d�

w (Ā) (bottom left). The
distribution of average local unemployment rates, g

bFavg(Ā,N,n) (t), for f = 0.20 (bottom right).

We can construct such a probability distribution of possible average local

unemployment rates for every feasible level of unemployment in the economy.

We can conceivably compute the average local unemployment rate configuration

by configuration for a given global unemployment rate, and we can then plot

the corresponding probability distribution. The top of Figure 1.6 plots the set

of possible average local unemployment rates for a fixed global unemployment

rate, and the bottom of Figure 1.6 plots the corresponding probability distribution

of possible average local unemployment rates for each feasible global level of

unemployment in the economy. When one agent is unemployed, there are just 15

possible configurations, and when 7 or 8 agents are unemployed, there are 6435

possible configurations. We continue to observe strong configuration dependence of
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Figure 1.6: Possible average local unemployment rates, bfavg (Ā,b,N, n), for a given global unem-
ployment rate, f , (top) and the probability distribution of possible average local unemployment rates,
g
bFavg(Ā,N,n) (t), for each global level of unemployment in the economy (bottom).

the system, and the average local unemployment rate can substantially deviate from

the actual global unemployment rate depending on the particular configuration

of unemployment in the economy. As the population size gets larger, the total

number of possible configurations, (Nn ), grows combinatorially, and it becomes less

feasible to construct the distribution of possible average local unemployment rates

configuration by configuration. In Section 1.6, we present a set of theoretical results

that allows us to construct this probability distribution and compute its features in

closed form for every population size, no matter how large the population size gets.
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We can imagine that an agent’s local unemployment rate is a determinant of

his or her sentiment about the macroeconomy, and the average local unemployment

rate is a population-wide indicator of macroeconomic sentiment. Such macroeco-

nomic sentiment can influence agents’ behavior. In the next section, we consider

a setting in which the local unemployment rate impacts agents’ voting decision.

Depending on the topology of agents’ observation network, the overall election

outcome, and thus the outcome for the economy, can be strongly configuration

dependent.

1.3 Macroeconomic Sentiment and Election Outcomes

We use the theoretical framework that we just developed to examine election out-

comes in a stylized setting. We study a population of voters who must choose

between two candidates named Hillary Clinton and Donald Trump. Each voter’s

macroeconomic sentiment, formed from that voter’s local unemployment rate, influ-

ences his or her voting decision, so configuration-induced variations in sentiment

for fixed macroeconomic fundamentals can alter individual agents’ voting decisions,

and thereby alter the election outcome and the outcome of the economy. This section

essentially shows how we can embed our theoretical framework developed in the

previous section into a real-world setting and extract economic meaning.

1.3.1 Model

We begin by considering a population of N agents, each of whom is a voter in the

election. Each agent faces a binary choice problem: either vote for Hillary Clinton

or Donald Trump. To make their decisions, agents consider the candidates’ policies.

There are P issues, and the candidates construct a policy for every issue. For each
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policy put forth by a particular candidate, there is an associated scalar benefit. Scalar

benefits are separable across issues. The P⇥ 1 vectors of benefits corresponding to

the policies of Clinton and Trump are respectively xC and xT. Agent i weights each

candidate’s set of policies using the P⇥ 1 weighting vector ai, with aT
i 1 = 1. ai 6= aj

for agents i and j represents preference heterogeneity. Agent i votes for Clinton if

ui (xC, ai) > ui (xT, ai), and agent i votes for Trump if ui (xT, ai) > ui (xC, ai).

The utilities that agent i respectively receives from the implementation of

Clinton’s policies and Trump’s policies are:

ui (xC, ai ; eiC) = aT
i xC + eiC and ui (xT, ai ; eiT) = aT

i xT + eiT,

where eiC and eiT are agent-specific, choice-specific shocks, as in Heckman and

Snyder (1997), and E [ui (x`, ai ; ei`)] = aT
i x` for ` 2 {C, T}. Subutilities aT

i xC and

aT
i xT both have a linear form; each one represents the weighted sum of benefits

accrued from the policies of a particular candidate.

Specifying the decision-making rule for each agent, let piT be the probability

that agent i votes for Trump given xT, xC, and ai, and let piC = 1� piT be the

probability that agent i votes for Clinton. Shocks eiT, eiC are assumed to be both

independent of the candidates’ policies and independent across voters. Define

hi = eiT � eiC, which is independent of aT
i xT � aT

i xC. Setting hi
iid⇠ Uniform (�b, b)

for every agent i 2 {1, . . . ,N},

piT =
1
2
+

aT
i (xT � xC)

2b

and piC =
1
2
+

aT
i (xC � xT)

2b

,

where piT = Pr [ui (xT, ai ; eiT) > ui (xC, ai ; eiC)]. If both candidates’ policies confer

the same benefits, xT = xC and agent i is equally likely to vote for either candidate:

piT = piC = 0.5.4

4We restrict the allowable values for b. We set b so that piT ,piC 2 (0, 1) for all i 2 {1, . . . ,N}.
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Let the first policy concern jobs and unemployment. We assume that the

weight an agent assigns to this policy directly depends on his or her local unem-

ployment rate, bfi (Ā,b,N, n):

[ai]1 = ai1 = bfi (Ā,b,N, n) ;

b ⌘ b (N, n) is the configuration of unemployment in the economy, with [b]i = 1

if agent i is unemployed and [b]i = 0 otherwise, and the overall unemployment

rate is f = n
N . The higher an agent’s local unemployment rate, the more that agent

cares about the issue of jobs and unemployment in the economy. This is consistent

with the findings of Bisgaard, Dinesen, and Sønderskov (2016), who observe that

Danish voters’ dissatisfaction with the national economy increases with the local

unemployment rate, defined as the fraction of all unemployed residents within a

fixed meter radius from the voter’s place of residence. The work of Healy and

Lenz (2017) meanwhile justifies the dependence of agents’ voting decisions on the

local unemployment rate, as these authors demonstrate that local unemployment

conditions impact the national voting outcome.

Therefore, if aT
i xT > aT

i xC, we want it to be possible for ui (xC, ai ; eiC) > ui (xT , ai ; eiT), and if
aT
i xC > aT

i xT , we want it to be possible for ui (xT , ai ; eiT) > ui (xC, ai ; eiC). For this to happen, we
need there to exist separate realizations of hi so that

hi < aT
i (xC � xT) and hi > aT

i (xC � xT) .

Since hi
iid⇠ Uniform (�b, b) for every agent i 2 {1, . . . ,N}, it follows that we must set

b > max
i2{1,...,N}

�

�

�

aT
i (xT � xC)

�

�

�

.

With piT 2 (0, 1), we are able to aggregate individual agents’ decision-making functions, piT , by
simple summation of piT across agents.
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The aggregate equation for the expected fraction of votes for Trump is now:

1
N

N

Â
i=1

piT =
1
2
+

1
2b

"

bfavg (Ā,b,N, n) (xT,1 � xC,1) +
ÂN

i=1 ai2
N

(xT,2 � xC,2) + · · ·

+
ÂN

i=1 aiP
N

(xT,P � xC,P)

#

.

The overall weight accorded to the issue of jobs and unemployment in the economy

is the average local unemployment rate. If this quantity varies enough with the

configuration of unemployment in the economy, then we can potentially anticipate

different voting outcomes for a particular global unemployment rate.

Let’s assume that Trump’s jobs policy confers a greater benefit to voters

than Clinton’s jobs policy: xT,1 > xC,1 with xT,1 � xC,1 = 9. Let’s also assume

that xC,j � xT,j = xC,` � xT,` = 1 for all j, ` 6= 1, so the policy put forth by Clinton

for every other issue yields a benefit that exceeds that of Trump’s corresponding

policy. A higher average local unemployment rate favors the election of Trump. The

aggregate equation for the expected fraction of votes for Trump becomes:

1
N

N

Â
i=1

piT =
1
2
+

1
2b

h

10bfavg (Ā,b,N, n)� 1
i

. (1.4)

If the average local unemployment rate is 10 percent, either candidate is

equally likely to win the election. If the average local unemployment rate exceeds

10 percent, the expected vote share for candidate Trump exceeds 50 percent, so

the voting outcome favors Trump. If the average local unemployment rate is

less than 10 percent, the expected vote share for candidate Trump is less than 50

percent, so the voting outcome favors Clinton. We proceed to construct voters’

observation network so that we can determine the possible values of the average

local unemployment rate consistent with the economy’s overall unemployment rate.

Voters compute their local unemployment rates from their nodes on this network.
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These local unemployment rates affect individual voting behavior, and the average

local unemployment rate affects aggregate voting behavior and the election outcome.

1.3.2 Constructing Voters’ Observation Network

To construct voters’ observation network, we draw on details from the 2016 U.S.

presidential election. The observation network has 137.5 million nodes, the total

number of voters in the 2016 U.S. presidential election.5 Each node has a self-loop

because voters observe their own employment statuses. We assume that each agent

has, on average, 50 reciprocal linkages; these linkages may be formed with relatives,

colleagues, acquaintances, and so on. We accordingly construct an undirected

Erdös-Rényi graph whose expected degree is 50. We refer to this network of 137.5

million nodes with its self-loops and Erdös-Rényi linkages as the base graph.

In addition to the linkages comprising the base graph, we introduce media-

originating directed linkages. During the weeks and months preceding the election,

we assume that voters engage with a variety of news/talk media outlets that feature

stories about employed and unemployed individuals. These featured individuals

can shift voters’ perceptions of unemployment in the economy.6 We therefore gather

statistics on television network viewership, radio show listenership, and newspaper,

magazine, business journal, and business publication circulation in the United

States.

Appendix A.1 provides more details about viewership, listenership, and

readership statistics for media in the United States and overall data construction.

5“Black voter turnout fell in 2016, even as a record number of Americans cast ballots,” Pew
Research Center, May 12, 2017.

6Indeed, Goidel and Langley (1995) and Hetherington (1996) study the role of the media in
influencing voters’ evaluations of the macroeconomy.
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There is a total of 1867 different news/talk media sources. As observed in Figure 1.7,

audience sizes are heavy-tailed. We assume that news/talk media outlets feature an

employed or unemployed individual in one story per week for 15 weeks.7 Therefore,

to construct the network of media-originating linkages, for each media outlet, we

randomly select the set of audience members and we randomly select the set of 15

individuals that are featured in that news outlet’s stories. Directed edges are then

drawn from the set of audience members to each featured agent. This method of

network construction is carried out for all 1867 news/talk media sources.

Appendix A.1 presents detailed summary statistics for the base graph, the

media-originating graph, and the composite graph that pools both base and media-

originating linkages. Figure 1.7 plots the counter-cumulative distribution function

of degrees for the base graph, the counter-cumulative distribution functions of

out-degrees and in-degrees arising from the network of media-based linkages, and

the counter-cumulative distribution functions of out-degrees and in-degrees arising

from the composite network. For the base graph, with its 3,575,017,297 undirected

edges, the average degree is 51.0 with a standard deviation of 7.07. We obtain this

average degree because the Erdös-Rényi graph has an average degree of 50 and

each agent has a self-loop. In the media-originating graph, with its 2,712,493,694

directed edges, the average out-degree is 19.7 with a standard deviation of 17.0, and

the average in-degree is 19.7 with a standard deviation of 8,633.3.8 The counter-

cumulative distribution function of out-degrees for the media-originating graph

is a step function because agents accumulate 15 out-edges for every media source

7We choose 15 weeks because that is the number of weeks that elapsed from the conclusion of the
Republican and Democratic National Conventions until Election Day for the 2016 U.S. presidential
election. The Republican National Convention, Democratic National Convention, and Election Day
respectively took place from July 18-21, 2016, from July 25-28, 2016, and on November 8, 2016.

8The average out-degree and the average in-degree for any directed graph take the same value
since the total number of out-edges equals the total number of in-edges.
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Figure 1.7: Counter-cumulative distribution function (CCDF) of degrees for the base graph (top left).
CCDF of audience sizes for 1867 different media sources (top right). CCDFs of out- and in-degrees for
the network of media-originating linkages (middle). CCDFs of out- and in-degrees for the composite
network (bottom).
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in which they are an audience member. Therefore, out-degrees for the media-

originating graph occur in multiples of 15. Most voters have zero in-degree in the

media graph because they are not featured in news/talk media outlets; there are only

28,003 individuals featured in employment-related news stories. The probability of a

non-zero in-degree for this graph is 2.04⇥ 10�4, which we can observe in Figure 1.7

(middle). Since the counter-cumulative distribution function of audience sizes

across media sources is heavy-tailed, the counter-cumulative distribution function

of in-degrees for the media-originating graph is similarly heavy-tailed.

In the composite graph, the average out-degree is 70.7 with a standard de-

viation of 18.4. As depicted in Figure 1.7, we see that the counter-cumulative

distribution function of out-degrees for the composite graph takes the same shape

as the counter-cumulative distribution function of out-degrees for the base graph,

except that the former distribution is shifted to the right. Each agent has accumu-

lated additional out-edges from media-originating linkages, which generates a shift

in the distribution function. On average, the total number of media sources to which

people are exposed is 1.32. For the composite graph, the average in-degree is 70.7,

with a standard deviation of 8,633.3, and the maximum in-degree is 8,020,651. The

counter-cumulative distribution function of in-degrees for the composite network

(Figure 1.7, bottom) directly incorporates the distributional features of the counter-

cumulative distribution function of degrees for the base graph (Figure 1.7, top left)

and the counter-cumulative distribution function of in-degrees for the media graph

(Figure 1.7, middle). Most agents are not featured by the media, so their in-degree

is equal to their degree from the base graph. A small fraction of agents are featured

in the media, so their in-degree is equal to their degree from the base graph plus

their in-degree from the media graph. The counter-cumulative distribution function

of in-degrees for the composite graph therefore becomes heavy-tailed.
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1.3.3 When Configurations are Equally Likely: Distribution of

Possible Average Local Unemployment Rates and the Ex-

pected Voting Outcome

We can now study the distribution of possible average local unemployment rates and

the probability that the election outcome favors each individual candidate. We set

the unemployment rate in this economy to 9.6 percent. We decide to use the October

2016 U-6 unemployment rate in the United States specified by the Bureau of Labor

Statistics. This value is the national unemployment rate that immediately precedes

the 2016 U.S. presidential election.9 Since we are interested in capturing individuals’

macroeconomic sentiment, we use the U-6 unemployment series because it counts

those people who are discouraged workers or underemployed for economic reasons

as unemployed.

We would like to determine the distribution of possible average local un-

employment rates, G
bFavg(Ā,N,n) (t), in the economy given that there is an overall

9.6-percent unemployment rate. For each possible configuration of unemployment

in the economy, the average local unemployment rate is computed as follows:

bfavg (Ā,b,N, n) = [d�
w (Ā)]T b (N, n). As in Section 1.2, the average local unemploy-

ment rate depends on the vector of average weighted in-degrees, d�
w (Ā) = 1

N ĀT1,

of the underlying social observation network, G (Ā), and the particular configura-

tion of unemployment, b (N, n). The capacity for G
bFavg(Ā,N,n) (t) to be meaningfully

non-degenerate depends on the properties of d�
w (Ā), the latter of which is derived

from the 137.5-million-node voter observation network.

Appendix A.2 considers the case in which agents’ observation network solely

9The U-6 unemployment rate is defined as the “total unemployed, plus all marginally attached
workers plus total employed part time for economic reasons, as a percent of all civilian labor force
plus all marginally attached workers.”
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Figure 1.8: Counter-cumulative distribution function of average weighted in-degrees for the com-
posite network, assuming that each agent assigns an equal weight to each of his out-linkages (left).
Distribution of the average local unemployment rate, G

bFavg(Ā,N,n) (t), when f = 0.096, assuming
that configurations of unemployment in the economy are equally likely (right).

consists of the base graph; in that setting, the average local unemployment rate

does not meaningfully vary with configuration. Here, we take agents’ observation

network to be the more realistic composite graph. We compute each agent’s average

weighted in-degree by assuming that agents equally weight each of their observa-

tions of employment status. Once we compute this vector of agent weights, we

can determine each agent’s effective representation in the population. On average,

each agent has an effective weight of 1 agent, which we would expect. The effective

minimum weight is 0.249 agents, and the effective maximum weight is 98,733.1

agents. The median agent has an effective weight of 0.756 agents. The left side of

Figure 1.8 plots the counter-cumulative distribution function of average weighted

in-degrees. This distribution of agent weights is heavy-tailed. There is a relatively

small subset of agents in the entire voting population that is particularly influential

from being featured in the media.

We observe the distribution of possible average local unemployment rates,

G
bFavg(Ā,N,n) (t), on the right side of Figure 1.8. For every distributional feature of

G
bFavg(Ā,N,n) (t) that we highlight in this section, there is a corresponding theorem

presented in later sections of this work that shows how to compute that quantity in
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closed form. On the right side of Figure 1.8, the theoretical CDF for G
bFavg(Ā,N,n) (t)

overlays an empirical CDF.10 The empirical CDF is constructed by randomly drawing

100,000 configurations of unemployment from the set of all possible configurations

consistent with a 9.6-percent unemployment rate, and then computing the associ-

ated average local unemployment rate for each configuration. The theoretical and

empirical mean of this distribution is 0.096.11 The theoretical standard deviation for

this distribution is 0.00266, or 0.266 percentage points, and the size of two standard

deviations about the distribution’s mean value is 1.07 percentage points.12 Staying

within this two-standard-deviation band, the average local unemployment rate

can generally vary from 9.07 percent to 10.1 percent. The lowest possible average

local unemployment rate is 5.53 percent, and the highest possible average local

unemployment rate is 33.3 percent.13 The average local unemployment rate here

exhibits substantial configuration dependence, especially when we consider the

magnitude of fluctuations in the actual unemployment rate over the course of a

business cycle. For the most recent complete business cycle dated by the NBER,

that is, from March 2001 until December 2007 (i.e., from peak to peak), the U-6

unemployment series varied from 7.3 percent to 10.4 percent, a difference of just 3.1

percentage points. Variations in the average local unemployment rate are indeed

large enough that they can potentially mimic variations in business cycle conditions.

There are two different ways that we can understand the existence of such

strong configuration dependence for this very-large-N economic system. First,

strong variation in bfavg (Ā,b,N, n) emerges for a given f because the set of in-

10The theoretical CDF is constructed from Theorem 1.13 in Section 1.6.

11The theoretical mean is computed from Theorem 1.8 in Section 1.6.

12The theoretical standard deviation is computed from Theorem 1.9 in Section 1.6.

13Both quantities are constructed from Theorem 1.10 in Section 1.6.
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degrees for the composite graph (Figure 1.7, bottom) has a very high variance.

Second, strong variation in bfavg (Ā,b,N, n) emerges because the distribution of agent

weights, that is, the distribution of average weighted in-degrees for the composite

graph (Figure 1.8, left) has a heavy tail; as a result, there is a subset of agents in the

voting population that drives variation in the average local unemployment rate due

to their relatively large influence. Theorems 1.15 and 1.16 in Section 1.6 precisely

show how these two features of the composite graph generate such a strongly

non-degenerate distribution, G
bFavg(Ā,N,n) (t), even for large N.

The economy here exhibits sufficiently large configuration dependence that

its outcome, determined by the outcome of the U.S. presidential election, depends

on the actual allocation of unemployment among voters:

Example 1.3 (Voting Outcome, Composite Graph) Aggregate voting behavior is char-

acterized by Equation 1.4. The unemployment rate is 9.6 percent. Given that voters’

observation network is the composite graph, and voters equally weight each of their ob-

servations, there is a probability of 0.0707 that Trump’s expected vote share exceeds 0.5:

Pr

"

1
N

N

Â
i=1

piT > 0.5

#

= Pr
h

bFavg (Ā,N, n) > 0.10
i

⇡ 0.0707.

In Section 1.6, we show how to compute this quantity by hand. If we

only observe the global 9.6-percent unemployment rate, we might think that the

election outcome favors Clinton with certainty. However, since the average local

unemployment rate can meaningfully deviate from 9.6 percent, the outcome can

favor Trump, thereby setting the economy along a path that differs from the one in

which Clinton is elected. The probability that the election outcome favors Clinton is

92.93 percent, and the probability that the election outcome favors Trump is 7.07

percent.
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Appendix A.2 considers the distribution of possible outcomes for the econ-

omy for two variants of the composite graph. For both variants, the composite

graph is constructed by pooling linkages from the base graph and the media graph,

as is done here. In the first variant, the base graph is modified while the media

graph stays the same. The base graph is constructed by assuming that agents form

an average of 20 reciprocal linkages with other voters, rather than 50 reciprocal

linkages; every voter has a self-loop as well. Given this composite graph and a

9.6-percent unemployment rate, the minimum possible average local unemployment

rate is 3.63 percent, the maximum possible average local unemployment rate is 47.6

percent, and the standard deviation of the distribution of average local unemploy-

ment rates is 0.433 percentage points, so that a two-standard-deviation band equals

1.73 percentage points. The probability that the election outcome favors Trump is

equal to 17.7 percent, and the probability that the election outcome favors Clinton

is equal to 82.3 percent. In the second variant, the base graph stays the same, that

is, agents each have a self-loop and form 50 reciprocal linkages with other voters

on average, while the media graph is modified. The media graph in this second

variant is constructed by assuming that each news/talk media source publishes five

stories, rather than 15 stories, about the issue of jobs and unemployment. Given

this composite graph and a 9.6-percent unemployment rate, the minimum possible

average local unemployment rate is 6.55 percent, the maximum possible average

local unemployment rate is 21.5 percent, and the standard deviation of the distri-

bution of average local unemployment rates is 0.205 percentage points, so that a

two-standard-deviation band equals 0.820 percentage points. The probability that

the election outcome favors Trump is equal to 3.27 percent, and the probability that

the election outcome favors Clinton is equal to 96.73 percent. For all of the graphs

considered in this work, there is inherent randomness; the base graph is constructed
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by drawing linkages randomly between pairs of individuals, and the media graph

is constructed by randomly selecting, for each news/talk media source, audience

members and featured individuals. Such randomness serves as a natural bench-

mark; we would need to separately explore whether deviations from randomness

systematically change the properties of the distribution of possible average local

unemployment rates.

Each individual’s local unemployment rate essentially serves as a proxy for

his or her sentiment about the macroeconomy. The average local unemployment

rate is thus an aggregate statistic summarizing sentiment for all agents in the

system. Such sentiment, and its fluctuation, is a manifestation of animal spirits at its

core. Holding the fundamentals of the economy fixed, there can be configuration-

induced variations in sentiment. There can be waves of optimism if the average local

unemployment rate is less than its global value, and there can be waves of pessimism

if the average local unemployment rate is greater than its global value. Sentiment

is moreover quantifiable; the extent to which aggregate sentiment deviates from a

level that is commensurate with fundamentals depends on the extent to which the

average local unemployment rate deviates from the global rate of unemployment.

The underlying interaction structure among agents in the economy shapes the

capacity for there to exist non-fundamental swings in aggregate sentiment. This

work therefore provides a microfoundation for animal spirits.

This work buttresses other research that studies sentiment and consumer con-

fidence, and shocks to sentiment and consumer confidence, in the macroeconomic

setting and their effects on business cycles and aggregate fluctuations: for example,

Farmer and Guo (1994), Barsky and Sims (2012), Angeletos and La’O (2013), Ben-

habib, Wang, and Wen (2015), Huo and Takayama (2015), Acharya, Benhabib, and

Huo (2017), Angeletos, Collard, and Dellas (2017), and Milani (2017). In this work,
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we provide a simple mechanism for generating fluctuations in sentiment. Fluctu-

ations in sentiment or animal spirits arise here from variations in configuration,

with the scope for such fluctuation dependent on the topology of agents’ interaction

network. Cross-sectionally, variations in agents’ sentiment arise from differences

in agents’ local environments due to differences in network position, holding the

economy’s fundamentals fixed.

1.3.4 When Configurations are Not Equally Likely: Distribution

of Possible Average Local Unemployment Rates and the Ex-

pected Voting Outcome

Thus far, we have been considering the case in which each configuration of unem-

ployment is equally likely to occur, meaning that each individual in the population

is equally likely to be unemployed. We proceed to dispense with this assumption

and instead compute the mean and variance of the distribution of possible average

local unemployment rates when configurations are no longer equally likely. Now,

the mean average local unemployment rate can deviate quite strongly away from

the actual global rate of unemployment, f .

We segment the population into two groups: (1) those agents featured by

news/talk media and (2) those agents not featured by news/talk media, with agents

in the first group relatively more likely to be unemployed. The number of agents

in the first group is x = 28, 003, and the number of agents in the second group is

N � x = 137.5⇥ 106 � 28, 003. We re-index the population of agents so that those in

group 1 have indices 1 to x while those in group 2 have indices x+ 1 to N. Attribute

gi characterizes agents according to whether or not they have been featured by

news/talk media. The probability fi that agent i is unemployed is fi = r1 for all
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i 2 {1, . . . , x} and fi = r2 for all i 2 {x+ 1, . . . ,N}. The odds ratio for agents in

group 1 relative to group 2 is: by1 =
r1

1�r1
r2

1�r2

.

Example 1.4 (Configurations Unequally Likely, by1 = 9.42) Suppose that media out-

lets engage in “fair and balanced” reporting, providing equal air time (or equal space for hard-

copy publications) to those agents who are employed and unemployed. Setting r1 = 0.50 and

r2 = 0.096, EbFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

= 0.194 and Std. Dev. bFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

=

0.00452.

We show how to compute these first two moments in Section 1.7, employing

Theorem 1.17. Here we observe extreme bias in the distribution of average local

unemployment rates relative to the actual global unemployment rate of 9.6 percent.

The mean average local unemployment rate is very high at 19.4 percent, so the

voting outcome overwhelmingly favors Trump.

This heightened exposure to unemployment via the media might be a reason

why residents of the United States, as well as residents of other countries, grossly

overestimate the national unemployment rate. In an August 2014 Ipsos-MORI poll,

surveyed Americans stated, on average, that the national unemployment rate was

32 percent, greatly exceeding even the U-6 unemployment rate of 11.9 percent.14

Similarly, in an October 19-22, 2016 survey of 1000 unemployed American adults,

about one in three individuals believed that the national unemployment rate was

15 percent or higher.15 The polled individuals were unemployed, so it makes

sense that they sense a national unemployment rate that exceeds the actual one.

However, the extent of miscalculation is still quite significant, for in some cases, they

were even provided with information about the national unemployment rate. The

14“Americans think the unemployment rate is 32 percent,” Vox, November 15, 2014.

15“Trump supporters vastly overestimate unemployment– and they blame politicians for it,” The
Washington Post, November 2, 2016.
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unemployment rate is one of the most salient features of an economy, so individuals’

local perceptions of this statistic directly affect how they perceive the economy’s

overall health. Persistently high assessments of the unemployment rate can impact

the behavior of various agents in the economy, whether such decision-making

concerns voting or something else.

1.4 Sample Network-Derived Vectors of Agent Weights

Beginning with this section, we develop the mathematics that enables us to first

construct the precursor distribution of possible local relative frequencies of the

attribute and then construct the distribution of possible outcomes for the economy

given the topology of agents’ interaction network. To construct the precursor

distribution GX(Ā,N,n) (t), we decompose each quantity x (Ā,b,N, n) into a network-

derived vector of agent weights, w (Ā), and a configuration vector: b (N, n):

x (Ā,b,N, n) = [w (Ā)]T b (N, n) .

The vector of agent weights is the object by which the topology of agents’ interaction

network shapes the precursor distribution and the distribution of possible outcomes

for the economy.

Quantities x (Ā,b,N, n) and w (Ā) are both very useful objects that will

allow us to study and characterize the precursor distribution and the distribution

of possible outcomes for the economy, but ultimately they are abstract. We refer

to x (Ā,b,N, n) as the local relative frequency of the attribute; however, without

additional details about the specific interpretation of this object, there does not

actually exist a method by which we compute this quantity. Similarly, w (Ā) is

a network-derived vector of agent weights, but without additional details about
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this object, we do not have a method for deriving this vector. In the present

section, we study different cases of x (Ā,b,N, n) and w (Ā). For each case, we

have enough detail that we can assign a particular interpretation to x (Ā,b,N, n),

and we can show how the vector of agent weights, w (Ā), naturally emerges from

the underlying network. In the previous two sections, we focused on the pair

(x (Ā,b,N, n) ,w (Ā)) =
⇣

bfavg (Ā,b,N, n) ,d�
w (Ā)

⌘

; in this section, we introduce

additional pairs that can be relevant for other applications. Our sample set of scalar

quantities and the vectors of agent weights to which they pair is as follows:

1.
⇣

bfi (Ā,b,N, n) ,wa,i (Ā)
⌘

. For every agent i 2 {1, . . . ,N}, bfi (Ā,b,N, n) is the

configuration-specific weighted local relative frequency of the attribute in agent

i’s immediate network neighborhood. The accompanying random variable is

bFi (Ā,N, n) with CDF G
bFi(Ā,N,n) (t). The corresponding network-derived vector

of agent weights is wa,i (Ā) = ([Ā]i⇤)
T, so bfi (Ā,b,N, n) = [wa,i (Ā)]T b (N, n).

2.
⇣

bf (q)i (Ā,b,N, n) ,w(q)
a,i (Ā)

⌘

. For every agent i 2 {1, . . . ,N}, bf (q)i (Ā,b,N, n) is

the configuration-specific weighted local relative frequency of the attribute for

agent i following q rounds of repeated linear updating by each agent with his or

her immediate neighbors. The accompanying random variable is bF(q)i (Ā,N, n)

with CDF G
bF(q)i (Ā,N,n)

(t). The corresponding network-derived vector of agent

weights is w(q)
a,i (Ā) = ([Āq]i⇤)

T, so bf (q)i (Ā,b,N, n) =
h

w(q)
a,i (Ā)

iT
b (N, n).

3.
⇣

bfavg (Ā,b,N, n) ,d�
w (Ā)

⌘

. bfavg (Ā,b,N, n) is the configuration-specific

population-averaged weighted local relative frequency of the attribute in

each agent’s immediate neighborhood. The accompanying random vari-

able is bFavg (Ā,N, n) with CDF G
bFavg(Ā,N,n) (t). The corresponding network-

derived vector of agent weights is d�
w (Ā) = 1

N ĀT1, so bfavg (Ā,b,N, n) =

[d�
w (Ā)]T b (N, n).
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4.
⇣

bf (q)avg (Ā,b,N, n) ,d� (q)
w (Ā)

⌘

. bf (q)avg (Ā,b,N, n) is the configuration-specific

population-averaged weighted local relative frequency of the attribute fol-

lowing q rounds of repeated linear updating by each agent with his or her

immediate neighbors. The accompanying random variable is bF(q)avg (Ā,N, n)

with CDF G
bF(q)avg(Ā,N,n)

(t). The corresponding network-derived vector of agent

weights is d� (q)
w (Ā) = 1

N [Āq]T 1, so bf (q)avg (Ā,b,N, n) =
h

d� (q)
w (Ā)

iT
b (N, n).

5.
⇣

bf (•) (Ā,b,N, n) ,w• (Ā)
⌘

. bf (•) (Ā,b,N, n) is the configuration-specific con-

sensus local relative frequency of the attribute following infinitely many rounds

of repeated linear updating by each agent with his or her immediate neighbors.

The accompanying random variable is bF(•) (Ā,N, n) with CDF G
bF(•)(Ā,N,n) (t).

The corresponding network-derived vector of agent weights is w• (Ā), to be

later computed in this section, and bf (•) (Ā,b,N, n) = [w• (Ā)]T b (N, n).

Observe that each of these scalar quantities, that is, each of these local relative

frequencies of the attribute, is computed in a manner exactly parallel to the way

that we computed x (Ā,b,N, n); for example:

x (Ā,b,N, n) = [w (Ā)]T b (N, n) and

bf (q)avg (Ā,b,N, n) =
h

d� (q)
w (Ā)

iT
b (N, n) .

Also note that the computation of each CDF parallels the computation of GX(Ā,N,n) (t).

We additionally observe that each of the vectors of agent weights derived above has

elements that sum to 1.16

We would like to now demonstrate how to compute w• (Ā), and we would

like to show how the elements of this vector depend on network primitives when

16To see this, note that Ā is row-stochastic, and row-stochasticity is preserved under matrix
multiplication.
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graph G (A) satisfies particular assumptions. First, we define the period of a node

and aperiodicity of a graph:

Definition 1.2 For a graph G (A) = (V (A) , E (A)), the period pdi of node i 2 V (A) is

pdi ⌘ gcd {q � 1 : [Aq]ii > 0}, where gcd denotes the greatest common divisor. Node i is

aperiodic when pdi = 1, and graph G (A) = (V (A) , E (A)) is aperiodic when pdi = 1

for all nodes i 2 V (A).

To compute the period of a node on a graph, construct a set that contains the lengths

of all possible cycles for that node and then identify the greatest common divisor

among all integers in that set. A node is aperiodic when the greatest common

divisor among all integers in that set equals 1, and a graph is aperiodic when every

constituent node is itself aperiodic.

To compute w• (Ā), one necessary assumption is that the row-stochastic

weighted adjacency matrix Ā must be primitive. Primitivity of Ā is equivalent

to strong connectedness and aperiodicity of its directed companion graph G (Ā).

Defining w(q)
ij ⌘ [Āq]ij as the weight that agent i assigns to agent j following q

rounds of linear updating, we now demonstrate the existence of w• (Ā) and its

computation:

Theorem 1.1 If Ā is primitive, then limq!• w(q)
ij =

⇥

wT
•
⇤

j exists. The pair
�

wT
•, 1

�

is

the unique dominant left eigenpair of Ā, wT
•Ā = wT

•, and wT
•1 = 1.

Provided that Ā is primitive, we compute vector w• (Ā) by solving for the left

eigenvector of Ā corresponding to its unit eigenvalue, which happens to be the

dominant, or largest, eigenvalue for Ā. As q ! •, provided that Ā is primitive,

the weight that every agent assigns to agent j converges to the same limiting value,
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[w• (Ā)]j. Specifically,

lim
q!•

Āq =

0

B

B

B

B

@

wT
•
...

wT
•

1

C

C

C

C

A

.

Since every agent assigns the same weight to each agent j in the population, in

this setting, the local relative frequency of the attribute for any configuration,

bf (•) (Ā,b,N, n) = [w• (Ā)]T b (N, n), is the same across agents. There is consensus

among agents, and we refer to bf (•) (Ā,b,N, n) as the consensus local relative

frequency of the attribute. A variant of Theorem 1.1 is presented in DeGroot (1974),

with infinite repeated linear updating and the vector, w• (Ā), of agent weights

under consensus forming the basis for DeGroot learning.

Vector w• (Ā) can be expressed in a closed form provided that G (A), the

unweighted graph that pairs with graph G (Ā), satisfies certain assumptions:

Theorem 1.2 If graph G (A) = (V (A) , E (A)) is undirected, connected, and aperiodic,

and all non-zero elements within every row of the corresponding matrix Ā have the same

value, then w• (Ā) = d
1Td > 0, where [d]i is the degree for agent i.

Provided that we satisfy the assumptions of Theorem 1.2, an agent’s weight under

consensus is directly proportional to his or her degree: [w• (Ā)]i =
di
1Td . A self-loop

increases an agent’s degree by one unit, which makes the degree vector equal to:

d = A1. A result similar to that of Theorem 1.2 appears in DeMarzo, Vayanos, and

Zwiebel (Theorem 6, 2003).

We can also establish a closed-form solution for w• (Ā) when G (A) is

directed, aperiodic, and Eulerian. We define a directed graph to be Eulerian when it

has the following properties:
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Definition 1.3 A directed graph G (A) = (V (A) , E (A)) is Eulerian if and only if it is

strongly connected and d+ = d�.

A directed graph is Eulerian when each node’s in-degree equals its out-degree, and

the graph is strongly connected. We can now present the closed-form solution for

w• (Ā):

Theorem 1.3 If the graph G (A) = (V (A) , E (A)) is Eulerian and aperiodic, and all

non-zero elements within every row of the corresponding matrix Ā have the same value,

then w• (Ā) = d+

1Td+ > 0, where [d+]i is the out-degree for agent i.

For this class of graphs, an agent’s weight under consensus is directly proportional to

his or her out-degree, or equivalently, his or her in-degree: [w• (Ā)]i =
d+i

1Td+ =
d�i

1Td� .

A self-loop increases both an agent’s out-degree and in-degree by one unit, so

d+ = d� = A1 = AT1.

We can additionally establish a closed-form solution for w• (Ā) for the

family of random digraphs with N nodes, no self-loops, probability p of directed

edge formation independent across edges, and symmetric edge weights so that

[Ā]ij =
1
d+i

if there exists a directed edge from node i to node j:

Theorem 1.4 If (c (N)� 1) logN ! •, where Np = c(N) logN, then w.h.p. w• (Ā)

is unique and w• (Ā) ⇠ d�+i
E[|E |] , where [i]i = maxj2N�(i)

d�j
d+j

and N� (i) is the in-

neighborhood of node i. w.h.p. w• (Ā) ⇠ d�
E[|E |] for N � o

�

N1/4� nodes. If c(N) = 1+ k,

k > 0, or (c(N)� 1) logN = w (log logN), then w.h.p. w• (Ā) ⇠ d�
E[|E |] .

The statements of this theorem are made w.h.p. relative to the family of random

digraphs. We take (c(N)� 1) logN ! • so that each random digraph is strongly

connected w.h.p. Given that we are considering random digraphs with no self-loops,

the expected number of edges for each graph is E [|E |] = N (N � 1) p ⇠ N2p. As
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ii increases, one of agent i’s in-neighbors becomes relatively more observable, so

[w• (Ā)]i consequently increases. In general, the higher an agent’s in-degree, the

higher that agent’s weight. This theorem can be formulated due to parallels between

the vector w• (Ā) for a random digraph with symmetrically weighted edges and

the stationary distribution for a simple random walk on a random digraph. Cooper

and Frieze (2012) study this latter problem, so we can therefore adapt some of

their mathematics to provide insight into the behavior of w• (Ā) over this class of

random digraphs.

These newly introduced closed-form expressions for w• (Ā), in addition

to serving as sample network-derived vectors of agent weights, can also be used

in research on DeGroot learning. The next example computes the set of network-

derived vectors of agent weights introduced at the beginning of this section for a

network with 15 nodes formed from preferential attachment:

Example 1.5 (Network-Derived Vectors of Agent Weights) Consider an economy with

N = 15 agents whose interaction structure G (A) is depicted in the top left of Figure 1.9.

Assume that agents equally weight each of their linkages. Figure 1.9 plots the following

vectors of agent weights for i = 1 and q = 5: wa,i (Ā), w(q)
a,i (Ā), d�

w (Ā), d� (q)
w (Ā), and

w• (Ā).

Since graph G (A) in Example 1.5 is undirected, connected, and aperiodic, and

agents equally weight each of their linkages, by Theorem 1.2, each agent’s weight

under consensus is directly proportional to his or her degree. We observe this

relation between an agent’s degree and his or her weight under consensus in the

bottom right plot of Figure 1.9. With limq!• Āq = 1 [w• (Ā)]T and convergence

of Āq fast in this particular setting, w(q)
a,i (Ā) ⇡ w• (Ā) and d� (q)

w (Ā) ⇡ w• (Ā),

which we also observe in Figure 1.9.
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Figure 1.9: Graph G (A) from Example 1.5 and plots of wa,i (Ā), w(q)
a,i (Ā), d�

w (Ā), d� (q)
w (Ā),

and w• (Ā), setting i = 1 and q = 5, and assuming that agents equally weight their linkages.

Appendix A.3 characterizes w(q)
a,i (Ā) = ([Āq]i⇤)

T and bf (q)i (Ā,b,N, n) =
h

w(q)
a,i (Ā)

iT
b (N, n) for all finite q and in the limit as q ! • in terms of the

fundamental features of Ā. It also studies the rate of convergence of bf (q)i (Ā,b,N, n)

to bf (•) (Ā,b,N, n).
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1.5 When Configuration is Irrelevant: The Degeneracy

of GX(Ā,N,n) (t)

In the previous section, we studied particular cases of x (Ā,b,N, n) and w (Ā). For

each case, we showed how to derive the vector of agent weights from the underlying

network, and we examined how agents’ weights depend on the topological features

of the network. This list of weighting vectors is certainly not exhaustive; the relevant

vector of agent weights, in general, emerges naturally from the setting under study.

We now focus on the relationship between the network-derived vector of

agent weights and the precursor distribution of possible local relative frequencies of

the attribute. For this section, we first study the null case in which the probability

distribution, GX(Ā,N,n) (t), is degenerate, meaning that the support of X (Ā,N, n) is

uniquely valued. We characterize the necessary and sufficient restrictions on both

the vector of agent weights and the underlying network structure for the precursor

distribution to be degenerate. Degeneracy of this probability distribution can lead

to the distribution of possible outcomes for the economy also being degenerate.

After studying the case in which the probability distribution is degenerate, we

then determine the necessary and sufficient conditions for the population-wide

cross-sectional distribution of local relative frequencies of the attribute to be in-

variant to configuration. In such a setting, the population set of actions becomes

invariant to configuration, which makes the outcome of the economy also invariant

to configuration and the distribution of possible outcomes degenerate. We find that

the conditions for degeneracy are quite restrictive. Most economic systems with

interacting agents therefore tend to have probability distributions that feature some

level of non-degeneracy, which makes the outcome of the economy dependent on

the particular configuration of the attribute among agents. Section 1.6 studies the
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more general case of non-degeneracy.

We begin by focusing on the precursor distribution GX(Ā,N,n) (t) of possible

local relative frequencies of the attribute. Degeneracy of this distribution arises

when quantity x (Ā,b,N, n) is fixed for all possible configurations b 2 B (N, n).

When this condition holds for every feasible f , we say that quantity x (Ā,b,N, n) is

invariant to configuration:

Definition 1.4 Quantity x (Ā,b,N, n) is invariant to configuration when

x (Ā,b,N, n) = x (Ā,b0,N, n) for all configurations b,b0 2 B (N, n), and this property

holds for all feasible n.

When x (Ā,b,N, n) is invariant to configuration for each feasible level f , the support

of X (Ā,N, n) takes one value and the variance of X (Ā,N, n) is zero. In the next

theorem, we determine the necessary and sufficient restrictions on the corresponding

vector of agent weights, w (Ā), for x (Ā,b,N, n) to be invariant to configuration,

and we solve for the support of X (Ā,N, n):

Theorem 1.5 Scalar quantity x (Ā,b,N, n) = [w (Ā)]T b (N, n) is invariant to configu-

ration if and only if [w (Ā)]i =
1
N for all i 2 {1, . . . ,N}. When x (Ā,b,N, n) is invariant

to configuration, x (Ā,b,N, n) = n
N .

When w (Ā) = 1
N1, every agent has the same effective representation in the popu-

lation. As a result, regardless of which agents have the attribute’s unit value, the

overall contribution by those agents to that attribute’s local relative frequency is the

same. The local relative frequency of the attribute is always equal to the attribute’s

global relative frequency, f . The support of X (Ā,N, n) is thus f . The configuration

of the attribute among agents in the system is irrelevant for how the system evolves,

and the outcome of the economy only depends on the system’s aggregate feature, f .
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We can similarly establish the necessary and sufficient restrictions on specific

network-derived vectors of agent weights for their corresponding local relative

frequencies of the binary-valued attribute to be invariant to configuration:

Corollary 1.1 (to Theorem 1.5) (1) Scalars bfi (Ā,b,N, n) and bf (q)i (Ā,b,N, n) are re-

spectively invariant to configuration if and only if, for all j 2 {1, . . . ,N}, [wa,i (Ā)]j =

1
N and

h

w(q)
a,i (Ā)

i

j
= 1

N .

(2) Vectors bf (Ā,b,N, n) and bf(q) (Ā,b,N, n) are respectively invariant to configuration if

and only if, for all i, j 2 {1, . . . ,N}, [wa,i (Ā)]j =
1
N and

h

w(q)
a,i (Ā)

i

j
= 1

N .

(3) Scalars bfavg (Ā,b,N, n) and bf (q)avg (Ā,b,N, n) are respectively invariant to configura-

tion if and only if, for all i 2 {1, . . . ,N}, [d�
w (Ā)]i =

1
N and

h

d� (q)
w (Ā)

i

i
= 1

N .

(4) Scalar bf (•) (Ā,b,N, n) is invariant to configuration if and only if, for all i 2 {1, . . . ,N},
[w• (Ā)]i =

1
N .

When x (Ā,b,N, n) 2
⇢

n

bfi (Ā,b,N, n)
oN

i=1
,
n

bf (q)i (Ā,b,N, n)
oN

i=1
,

bfavg (Ā,b,N, n) , bf (q)avg (Ā,b,N, n) , bf (•) (Ā,b,N, n)
o

is invariant to configuration,

x (Ā,b,N, n) = n
N . When bf (Ā,b,N, n) and bf(q) (Ā,b,N, n) are invariant to configura-

tion, bf (Ā,b,N, n) = bf(q) (Ā,b,N, n) = n
N1.

Corollary 1.1 follows immediately from Theorem 1.5. The scalar quantities,

bfi (Ā,b,N, n), bf (q)i (Ā,b,N, n), bfavg (Ā,b,N, n), bf (q)avg (Ā,b,N, n), and bf (•) (Ā,b,N, n)

are all invariant to configuration when the vectors of agent weights to which they

are paired, equal 1
N1. Then, every agent has the same effective representation in the

population, so regardless of which subset of agents has the attribute’s unit value,

the local relative frequency of that attribute remains the same. The distributions

G
bFi(Ā,N,n) (t), GbF(q)i (Ā,N,n)

(t), G
bFavg(Ā,N,n) (t), GbF(q)avg(Ā,N,n)

(t), and G
bF(•)(Ā,N,n) (t) all

become degenerate; their supports are uniquely valued and equal to the attribute’s

global relative frequency, f . The local relative frequency of the attribute therefore
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equals its global relative frequency with probability 1, and this can make the distri-

bution of possible outcomes for the economy degenerate and only dependent on

the system’s aggregate feature, f .

Returning to Corollary 1.1, vectors bf (Ā,b,N, n) and bf(q) (Ā,b,N, n) are in-

variant to configuration when each of their respective elements, bfi (Ā,b,N, n) and

bf (q)i (Ā,b,N, n), are invariant to configuration. When we have invariance along

each dimension, both the population vector of agent actions and the population set

of agent actions are invariant to configuration provided that each agent chooses

an action that depends on his or her local relative frequency of the attribute. The

outcome of the economy then becomes unique. When we have invariance along

each dimension, we can also define multivariate distributions, G
bF(Ā,N,n) (t) and

G
bF(q)(Ā,N,n) (t), whose N marginal distributions are all degenerate.

In Corollary 1.1, we stated the necessary and sufficient restrictions on specific

vectors of agent weights that lead to degenerate probability distributions. Since

these vectors of agent weights are explicitly network-derived, Theorem 1.6 presents

the corresponding necessary and sufficient restrictions on Ā:

Theorem 1.6 (1) Scalars bfi (Ā,b,N, n) and bf (q)i (Ā,b,N, n) are respectively invariant to

configuration if and only if [Ā]i⇤ =
1
N1T and [Āq]i⇤ =

1
N1T. (2) Vectorsbf (Ā,b,N, n) and

bf(q) (Ā,b,N, n) are respectively invariant to configuration if and only if Ā = 1
N11T and

Āq = 1
N11T. (3) Scalars bfavg (Ā,b,N, n) and bf (q)avg (Ā,b,N, n) are respectively invariant

to configuration if and only if Ā is doubly stochastic and Āq is doubly stochastic. (4) Scalar

bf (•) (Ā,b,N, n) is invariant to configuration if and only if Ā is doubly stochastic.

When these restrictions on Ā or Āq are satisfied, the distributions G
bFi(Ā,N,n) (t),

G
bF(q)i (Ā,N,n)

(t), G
bFavg(Ā,N,n) (t), GbF(q)avg(Ā,N,n)

(t), and G
bF(•)(Ā,N,n) (t) are all degenerate

for every feasible f .
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Let us first discern the relationship between the double stochasticity of Ā

(Āq) and the invariance of bfavg (Ā,b,N, n) (bf (q)avg (Ā,b,N, n) to configuration. The

sum of the jth column of Ā (Āq) represents the total weight that every agent in

the population accords to agent j; it is the effective representation of agent j in the

population. When Ā (Āq) is doubly stochastic, every agent in the population has the

same effective representation, that of one agent, so configuration becomes irrelevant.

We now discern the relationship between the double stochasticity of Ā and the

invariance of bf (•) (Ā,b,N, n) to configuration. When Ā is both primitive and doubly

stochastic, limq!• Āq = 1 [w• (Ā)]T is also doubly stochastic. Since
⇥

1wT
• (Ā)

⇤

ij =

[w• (Ā)]j for each i 2 {1, . . . ,N}, limq!• Āq = 1
N11T with w• (Ā) = 1

N1; every

agent has the same weight under consensus when Ā is doubly stochastic, which

makes bf (•) (Ā,b,N, n) invariant to configuration. The necessary restrictions on Ā

for these various local relative frequencies of the attribute to be exactly invariant to

configuration are very limiting. Many underlying graphs thus generate some level

of non-degeneracy and dependence on configuration.

In the next example, we illustrate how bfavg (Ā,b,N, n) becomes invariant to

configuration and G
bFavg(Ā,N,n) (t) becomes degenerate for all f when Ā is doubly

stochastic:

Example 1.6 (Invariance of bf
avg

(Ā, b,N, n) to Configuration) Consider an economy

with N = 15 agents whose interaction network G (A) (Figure 1.10) is a directed 4-regular

graph with self-loops for every node. Assuming that agents equally weight each of their out-

edges, bfavg (Ā,b,N, n) = n
N is invariant to configuration and distribution G

bFavg(Ā,N,n) (t)

is degenerate for all feasible n.

When the underlying graph G (A) is regular and agents assign an equal weight to

each of their linkages, Ā becomes doubly stochastic, so d�
w (Ā) = 1

N1 (Figure 1.10,
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top right) and bfavg (Ā,b,N, n) does not change with configuration (Figure 1.10,

bottom). For all feasible f , the population-averaged local relative frequency of the

attribute equals its global relative frequency.
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Figure 1.10: Corresponding to Example 1.6, directed 4-regular graph with self-loops G (A) (top
left), a plot of the average weighted in-degree for each agent, d�

w (Ā) (top right), and the average local
relative frequency of the attribute, bfavg (Ā,b,N, n), for every possible configuration b 2 B (N, n)
and for all feasible global relative frequencies of the attribute, f (bottom).

We have finished examining settings in which the precursor distribution of

possible local relative frequencies of the attribute is degenerate. This degeneracy of

GX(Ā,N,n) (t) and its counterparts is often a necessary prerequisite for the distribution

of possible outcomes for the economy to also be degenerate. Degeneracy of these

probability distributions means that the economy is not configuration dependent;
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rather, the way that the economy evolves depends on f , the global relative frequency

of the attribute and the economy’s aggregate feature, and not on the particular

configuration of the attribute among agents. It is very difficult to exactly satisfy the

conditions that make these probability distributions degenerate, and therefore, most

economic systems exhibit some level of dependence on configuration. Modeling the

economy as if its evolution only depends on its aggregate features is, in general,

incomplete.

We next transition towards characterizing environments in which the

population-wide cross-sectional distribution of local relative frequencies of the

attribute is invariant to configuration. When the cross-sectional distribution is

invariant to configuration, the cross-sectional distribution of agent actions becomes

invariant to configuration, which can lead to a unique outcome for the economy. The

next theorem provides necessary and sufficient conditions for the unordered multi-

sets,
n

bfi (Ā,b,N, n)
oN

i=1
and

n

bf (q)i (Ā,b,N, n)
oN

i=1
, to be invariant to configuration.

It places necessary and sufficient restrictions on Ā (respectively Āq):

Theorem 1.7 Unordered multiset
n

bfi (Ā,b,N, n)
oN

i=1
(respectively unordered multiset

n

bf (q)i (Ā,b,N, n)
oN

i=1
) is invariant to configuration if and only if the following two condi-

tions hold:

(1) the row sum of any n column vectors of Ā (respectively Āq) has the same multiset of

elements, and this property holds for every n 2 �1, . . . , bN
2 c
 ✓ Z+, and

(2) Ā (respectively Āq) is doubly stochastic.

When these restrictions are satisfied, the cross-sectional distribution of agents’

weighted local relative frequencies of the attribute is invariant to configuration for

any value n. When n = 1, every column of Ā (respectively Āq) must have the same

multiset of elements. Since all matrix elements in Ā (respectively Āq) must also
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sum to N, Ā (respectively Āq) is doubly stochastic. It is very difficult to exactly

satisfy the restrictions on Ā so that the population set of weighted local relative

frequencies of the attribute is invariant to configuration. Therefore, in most settings,

the cross-sectional distribution of agent actions varies with configuration and the

distribution of possible outcomes for the economy is non-degenerate.

Notwithstanding these strong restrictions, there do exist networks G (Ā) for

which the conditions of Theorem 1.7 are satisfied. When Ā = 1
N11T, so that the

underlying interaction network is a complete graph with self-loops for every node,

or when Ā = IN⇥N, so that the underlying interaction network is a graph with

isolates and a self-loop for every node, multiset
n

bfi (Ā,b,N, n)
oN

i=1
is invariant to

configuration for all feasible n. In the former case, multiset
n

bfi (Ā,b,N, n)
oN

i=1
=

� n
N ,

n
N , . . . ,

n
N
 

, and in the latter case, multiset
n

bfi (Ā,b,N, n)
oN

i=1
=

n

{1}ni=1 , {0}Ni=n+1

o

.

1.6 When ConfigurationMatters: The Non-Degeneracy

of GX(Ā,N,n) (t)

We just finished studying the null setting in which the particular configuration of

the attribute among agents is irrelevant and the probability distribution GX(Ā,N,n) (t)

is degenerate. We now leave this null setting behind; in this section, we develop

the mathematics that enables us to fully characterize the distribution of X (Ā,N, n)

when it is non-degenerate. These theoretical results hold for all possible population

sizes, network topologies, and prevalences of the binary-valued attribute in the

population. These theoretical findings allow us to directly map the topology of

agents’ interaction network to the distributional features of X (Ā,N, n). Specifically,
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we map the topology of agents’ interaction network, G (Ā), to a network-derived

vector of agent weights, w (Ā), and we then map the network-derived vector of

agent weights to the probability distribution, GX(Ā,N,n) (t). The theoretical findings

presented in this section allow us to collapse the complexities of network-based

agent interactions into a simple probability distribution, GX(Ā,N,n) (t), that we can

then use to construct the probability distribution of possible outcomes for the

economy.

We begin by presenting results concerning the distributional features of

X (Ā,N, n), and we then explore how GX(Ā,N,n) (t) can remain approximately non-

degenerate even for very large N. For several findings, we assume that each

configuration, b (N, n) 2 B (N, n), of the binary-valued attribute among agents in

the system is equally likely.

1.6.1 Distributional Features of X (Ā,N, n)

We characterize all notable features of the distribution of possible local relative

frequencies of the attribute, GX(Ā,N,n) (t).17 However, before doing so, we introduce

a few more pieces of notation that simplify certain expressions later on in this section.

Define random variable W (Ā) with realization [w (Ā)]i, the weight for agent i. In

this section, we are interested in the population moments of W (Ā). We construct

these moments from the elements of the network-derived vector of agent weights,

w (Ā); unless otherwise specified, there is no randomness in the population set of

agent weights. We can similarly introduce random variables for particular cases of

agent weights. Define Wa,j (Ā) for all j 2 {1, . . . ,N}, W(q)
a,j (Ā) for all j 2 {1, . . . ,N},

D�
w (Ā), D� (q)

w (Ā), and W• (Ā), whose realizations are respectively agent weights

17These results hold even when the vector of agent weights is not network-derived.
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⇥

wa,j (Ā)
⇤

i,
h

w(q)
a,j (Ā)

i

i
, [d�

w (Ā)]i,
h

d� (q)
w (Ā)

i

i
, and [w• (Ā)]i.

We also define random variables for the degree of an undirected graph, the

out-degree of a directed graph, and the in-degree of a directed graph. When G (A) is

undirected, the degree vector is d (A) = A1. When G (A) is directed, the out-degree

vector is d+ (A) = A1 and the in-degree vector is d� (A) = AT1. Define random

variables D (A), D+ (A), and D� (A) whose realizations are respectively the degree

for agent i, [d (A)]i, the out-degree for agent i, [d+ (A)]i, and the in-degree for

agent i, [d� (A)]i.

The distribution GX(Ā,N,n) (t) strongly depends on the distributional features

of agents’ weights. We can see this relationship most clearly when n = 1. For that

case, GX(Ā,N,n) (t) = GW(Ā) (t), and the distribution of possible local relative fre-

quencies of the attribute equals the distribution of agent weights. For the remainder

of this section, we characterize the distributional features of X (Ā,N, n) for a general

n, and we determine how these features of X (Ā,N, n) relate to network structure

via the set of network-derived agent weights. We begin by defining the first moment

of X (Ā,N, n):

Theorem 1.8 EX (Ā,N, n) = n
N = f .

The first moment of X (Ā,N, n) is equal to the attribute’s global relative frequency, f .

The local relative frequency of the attribute can deviate in either direction away from

the attribute’s global relative frequency, but in expectation, it must equal this value.

The distribution of X (Ā,N, n) is consequently centered about the point in which

configuration is irrelevant and only the aggregate feature, f , matters. Note that this

result follows from assuming that each configuration is equally likely. We will see in

the next section that this relationship between EX (Ā,N, n) and f disappears once

each configuration is no longer equally likely to occur.
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We can extend this result about the first moment to particular cases of

X (Ā,N, n):

Corollary 1.2 (to Theorem 1.8) For every random variable X (Ā,N, n) 2
⇢

n

bFi (Ā,N, n)
oN

i=1
,
n

bF(q)i (Ā,N, n)
oN

i=1
, bFavg (Ā,N, n) , bF(q)avg (Ā,N, n) ,

bF(•) (Ā,N, n)
o

, EX (Ā,N, n) = n
N .

For the remainder of this section, we omit the corollaries that immediately follow

from each of the presented theorems. We can construct such corollaries by sub-

stituting for each theorem the triplet (X (Ā,N, n) ,W (Ā) ,w (Ā)) with one of the

following triplets:
⇣

bFi (Ā,N, n) ,Wa,i (Ā) ,wa,i (Ā)
⌘

for every i 2 {1, . . . ,N},
⇣

bF(q)i (Ā,N, n) ,W(q)
a,i (Ā) ,w(q)

a,i (Ā)
⌘

for every i 2 {1, . . . ,N},
⇣

bFavg (Ā,N, n) ,D�
w (Ā) ,d�

w (Ā)
⌘

,
⇣

bF(q)avg (Ā,N, n) ,D� (q)
w (Ā) ,d� (q)

w (Ā)
⌘

, or
⇣

bF(•) (Ā,N, n) ,W• (Ā) ,w• (Ā)
⌘

.

We proceed to study the second moment of X (Ā,N, n). Assuming that each

configuration is equally likely, the variance of X (Ā,N, n) and its limiting behavior

as N ! • are:

Theorem 1.9 VarX (Ā,N, n) = n
N
�

1� n
N
� N

N�1 (NVarW (Ā)). VarX (Ā,N, n) ! 0

at rate N�1 as N ! • assuming VarW (Ā) < •.

The variance of the local relative frequency of the attribute directly depends on

the population variance of agent weights. If there is large heterogeneity in agents’

weights, then the local relative frequency of the attribute strongly varies with

configuration, and this gets reflected in the variance of the distribution. This

variance is maximal when f = 0.5, and it monotonically decreases as f moves away

from 0.5. To study the behavior of VarX (Ā,N, n) as the population increases in
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size, introduce replica graphs that both preserve existing agents’ relative weights

and maintain the amount of weight accorded to a particular indexed node on the

graph. By scaling the population upwards in this manner, VarX (Ā,N, n) halves as

the population size doubles.

In specific settings, we can relate the variance of the weighted local relative

frequency of the attribute to network primitives. When X (Ā,N, n) = bFavg (Ā,N, n),

Var bFavg (Ā,N, n) directly depends on VarD�
w (Ā): the capacity for variation in the

average local relative frequency of the attribute directly depends on the variance

of average weighted in-degrees for the network. Meanwhile, when X (Ā,N, n) =

bF(•) (Ā,N, n), Var bF(•) (Ā,N, n) directly depends on the variance of degrees for the

network, VarD (A), given the network’s total number of edges; this relationship

holds when graph G (A) is undirected, connected, and aperiodic, and all non-zero

elements within every row of Ā have the same value (see Theorem 1.2).

The closed-form expression for VarX (Ā,N, n) in Theorem 1.9 provides us

with the necessary mathematics to construct a configuration-induced error bound

about the outcome of an aggregated economic system. This error bound quantifies

the extent to which there can be variation in the outcome of the economy. The error

bound gets constructed about the outcome that results from only considering the

aggregate properties of the economy and not the underlying configuration of the

attribute. Since agents choose actions based on the local relative frequency of the

attribute, we can use VarX (Ā,N, n) to compute the extent to which the economy’s

outcome varies with configuration. The topology of the network determines the

size of this error bound.

In the next theorem, we show how to compute the lower and upper bounds

on the support of X (Ā,N, n). These values represent the lowest and highest

possible local relative frequencies of the attribute given the attribute’s global relative
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frequency in the population. They determine the maximal extent to which the local

relative frequency of the attribute can deviate from its global relative frequency

given the structure of the network. From these values, we are able to bound the

distribution of possible outcomes for the economy.

Theorem 1.10 Construct the ordered multiset {ws}Ns=1 from the elements of w (Ā) so that

ws  ws0 whenever s  s0. The lower and upper bounds on the support of X (Ā,N, n) are

respectively:

min supp X (Ā,N, n) =
n

Â
s=1

ws and max supp X (Ā,N, n) =
N

Â
s=N�n+1

ws.

The lower bound on the support of X (Ā,N, n) is equal to the sum of the n smallest

agent weights in the population, while the upper bound is equal to the sum of

the n largest agent weights in the population. All possible weighted local relative

frequencies of the attribute given f must then fall within these two bounds.

We proceed to study the limiting behavior of GX(Ā,N,n) (t) as N ! •. To do

so, we define the quantity

kN (e) =
1

ÂN
i=1

⇣

[wN (Ā)]i � 1
N

⌘2 Â
j2{1,...,N} s.t.

�

�

�

[wN(Ā)]j� 1
N

�

�

�

>esN

✓

[wN (Ā)]j �
1
N

◆2

where sN =

✓

n
N
�

1� n
N
�

ÂN
i=1

⇣

[wN (Ā)]i � 1
N

⌘2
◆1/2

. We make the population size,

N, explicit for the N ⇥ 1 vector wN (Ā) of network-derived agent weights because

we wish to study the behavior of GX(Ā,N,n) (t) as N increases. We establish the

following central limit theorem-type result:

Theorem 1.11 If limN!• kN (e) = 0 for any e > 0, then limN!• GX(Ā,N,n)� n
N

sN

(t) =

F (t) for all real t, where F (·) is the standard normal CDF.

The requirement that limN!• kN (e) = 0 for any e > 0 is a Lindeberg-type condition.
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As the population size increases and the number of agent weights increases, the

Lindeberg-type condition requires that there cannot be any subset of agent weights

as N ! • that strongly deviates from the average agent weight. When this

condition holds, we informally have that limN!• GX(Ā,N,n) (t) ⇡ F
⇣

t� n
N

sN

⌘

. The

distribution of weighted local relative frequencies of the attribute is asymptotically

normal with mean n
N and variance s

2
N, the mean of X (Ā,N, n) and the variance

of X (Ā,N, n). As the population size increases, provided that the set of agent

weights is well-behaved, the population variance of agent weights tends to zero, so

VarX (Ā,N, n) also tends to zero. As N ! •, the number of nodes on the network

indeed grows as well. The only constraint on the underlying network’s growth is

that the Lindeberg-type condition continues to be satisfied. From this theoretical

result, we see that, as N ! •, the particular configuration of the binary-valued

attribute among agents becomes irrelevant. When every configuration is equally

likely, the distribution of possible local relative frequencies of the attribute converges

to a degenerate distribution positioned at the attribute’s global relative frequency.

The rate at which this central limit theorem-type result applies determines the extent

to which configuration is still relevant for a large-N population.

The next theorem provides insight into the rate at which X (Ā,N, n) con-

verges to a normal distribution as the population size increases. It places an upper

bound on the maximal distance of the distribution GX(Ā,N,n) (t) to a normal distri-

bution with the same mean and variance:18

18Here, we take N to be large enough so that VarX (Ā,N, n) = n
N
�

1� n
N
� N

N�1 (NVarW (Ā)) =

n
N
�

1� n
N
� N

N�1 ÂN
i=1

⇣

[wN (Ā)]i � 1
N

⌘2 ⇡ n
N
�

1� n
N
�

ÂN
i=1

⇣

[wN (Ā)]i � 1
N

⌘2
= s

2
N .
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Theorem 1.12 For all real t,

�

�

�

�

GX(Ā,N,n) (t)� F
✓

t� n
N

sN

◆

�

�

�

�

 C
q

n
N
�

1� n
N
�

ÂN
i=1

�

�

�

[wN (Ā)]i � 1
N

�

�

�

3

✓

ÂN
i=1

⇣

[wN (Ā)]i � 1
N

⌘2
◆3/2 ,

where C is an absolute constant.

The upper bound depends on f and the normalized third absolute moment for the

distribution of agent weights. It is a Berry-Esseen-type inequality that specifies the

rate at which convergence to the normal distribution takes place by bounding the

maximal error of approximation.

Beyond the statistical features of X (Ā,N, n) provided thus far, we are also

interested in the CDF of the distribution, GX(Ā,N,n) (t). The next result shows, via

asymptotic expansion, how we can draw the CDF of our distribution for any feasible

population size, network structure, and prevalence of the attribute in the population.

Let’s begin by defining the function J (Ā,N, n, t):

J (Ā,N, n, t) = F (t)� H2 (t) f (t)C1

N

Â
i=1
bw3
i

� H3 (t) f (t)

"

C2

 

N

Â
i=1
bw4
i �

3
N

!

� 1
4N

#

� H5 (t) f (t)C3

 

N

Â
i=1
bw3
i

!2

,

where bwi =
[w(Ā)]i�EW(Ā)p

NVarW(Ā)
, C1 =

1� 2n
N

6( n
N (1� n

N ))
1/2 , C2 =

1�6( n
N )(1� n

N )
24( n

N )(1� n
N )

,

C3 =
(1� 2n

N )
2

72( n
N )(1� n

N )
, f (t) = F0 (t) = 1p

2p

e� t2
2 , and Hi (t) f (t) = (�1)i d i

dt i f (t).

Quantity bwi is constructed from the set of agent weights. We can then approximate

GX(Ā,N,n)�EX(Ā,N,n)
(VarX(Ā,N,n))1/2

(t) by the function J (Ā,N, n, t):

Theorem 1.13 Provided that condition (c) holds,
�

�

�

�

�

GX(Ā,N,n)�EX(Ā,N,n)
(VarX(Ā,N,n))1/2

(t)� J (Ā,N, n, t)

�

�

�

�

�

< C4 ⇥
N

Â
i=1

| bwi|5
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for all t, where C4 is only a function of n
N .

Condition (c) (Robinson (1978)) Given C0 > 0, there exist e > 0, C > 0, and

d > 0 not depending on N such that, for any fixed t, the number of indices j, for which
�

�

bwj bx� t� 2rp
�

� > e, for all bx 2
✓

C0 [maxi | bwi | ]�1 , C
h

ÂN
i=1 | bwi |5

i�1
◆

and all

r = 0,±1,±2, . . . , is greater than dN, for all N.

The asymptotic expansion J (Ā,N, n, t) in Theorem 1.13 is to order 1/N. Condi-

tion (c) requires that the multiset { bwi}Ni=1 not be clustered around too few values;

it therefore also requires that the multiset of agent weights {[w (Ā)]i}Ni=1 not be

clustered around too few values. This asymptotic expansion is a general result that

enables us to very strongly approximate the distribution, GX(Ā,N,n) (t), of weighted

local relative frequencies of the attribute provided that condition (c) holds:

GX(Ā,N,n) (t) ⇡ J

 

Ā,N, n,
t� EX (Ā,N, n)

(VarX (Ā,N, n))1/2

!

.

The function J (Ā,N, n, t) is essentially a collection of terms; the first term

is the normal distribution, and the other terms represent deviations away from

the normal distribution provided that they are non-zero. Note that ÂN
i=1 bw3

i =

N�1/2 SkewW (Ā) and ÂN
i=1 bw4

i � 3
N = N�1 ⇥ (Excess KurtosisW (Ā)). Accord-

ingly, we can re-write the function J (Ā,N, n, t) in terms of the higher-order moments

of W (Ā):

J (Ā,N, n, t) = F (t)� H2 (t) f (t)C1N�1/2 SkewW (Ā)

� H3 (t) f (t)


C2

⇣

N�1 Excess KurtosisW (Ā)
⌘

� 1
4N

�

� H5 (t) f (t)C3N�1 (SkewW (Ā))2 .

We can recover the central limit theorem-type result from Theorem 1.11 by noting

68



www.manaraa.com

that if the skewness and kurtosis of W (Ā) are finite, then limN!• J (Ā,N, n, t) =

F (t). The extent to which the higher-order moments of the distribution of agent

weights are non-zero determines the extent to which GX(Ā,N,n) (t) deviates from a

normal distribution.

We now demonstrate how skewness of W (Ā) directly generates skewness

of X (Ā,N, n). Take the derivative of J (Ā,N, n, t) with respect to t to find an

approximating probability density function to gX(Ā,N,n)�EX(Ā,N,n)
(VarX(Ā,N,n))1/2

(t):19

J0 (Ā,N, n, t) ⌘ ∂J (Ā,N, n, t)
∂t

= f (t) + H3 (t) f (t)C1

N

Â
i=1
bw3
i

+ H4 (t) f (t)

"

C2

 

N

Â
i=1
bw4
i �

3
N

!

� 1
4N

#

+ H6 (t) f (t)C3

 

N

Â
i=1
bw3
i

!2

.

The second and fourth terms in the expansion depend on the skewness of W (Ā). If

we expand the second term, we find that it is an odd function. Provided that f < 0.5

and SkewW (Ā) > 0, the second term reallocates mass away from the normal

density function f(t) to generate positive skewness. If f > 0.5 and SkewW (Ā) > 0,

the second term reallocates mass away from the normal density function f(t) to

generate negative skewness. The more heavily skewed the set of agent weights,

the more heavily skewed X (Ā,N, n). Even though the fourth term depends on the

skewness of W (Ā), it is an even function, so the reallocation of mass away from the

normal distribution has no effect on skewness.

Skewness of X (Ā,N, n) matters, particularly when the distribution is uni-

modal, because it determines the extent to which the median of the distribution

deviates from the mean of the distribution. Then, the probability that the local

19The distance,

�

�

�

�

�

gX(Ā,N,n)�EX(Ā,N,n)
(VarX(Ā,N,n))1/2

(t)� J0 (Ā,N, n, t)

�

�

�

�

�

, can also be bounded from above. See line (14)

of Robinson (1978), for example.

69



www.manaraa.com

relative frequency of the attribute is greater than f does not equal the probability

that the local relative frequency of the attribute is less than f . As a result, given a

random configuration, the network topology might be such that it favors relatively

higher or relatively lower local relative frequencies of the attribute. Depending

on the particular setting and the particular real-world interpretation of the binary-

valued attribute, this deviation of the mean from the median can be important.

In Appendix A.4, we explore in more detail how the higher-order features of the

distribution of agent weights shape the higher-order features of GX(Ā,N,n) (t). The

relationship between kurtosis of W (Ā) and kurtosis of X (Ā,N, n) is a bit more

complicated.

We see that the distributional features of W (Ā) shape the distribution

GX(Ā,N,n) (t); that relationship becomes explicit when we examine the function

J (Ā,N, n, t). Now, the vector of agent weights is itself network-derived, so ul-

timately, it is the topological features of agents’ interaction network that shape

the distributional features of GX(Ā,N,n) (t). When X (Ā,N, n) = bFavg (Ā,N, n), for

example, the shape of the CDF G
bFavg(Ā,N,n) (t) depends on the statistical moments

for the distribution of average weighted in-degrees. The distribution of average

weighted in-degrees therefore determines the shape of the distribution of possible

outcomes for the economy. Meanwhile, when X (Ā,N, n) = bF(•) (Ā,N, n), the

shape of G
bF(•)(Ā,N,n) (t) depends on the statistical moments for the distribution

of degrees, provided that G (A) is undirected, connected, and aperiodic, and all

non-zero elements within every row of Ā have the same value (see Theorem 1.2).

For this case, the shape of the degree distribution determines the shape of the

distribution of outcomes for the economy.

We can now revisit Example 1.3 from Section 1.3 and show how to compute

by hand the probability that Trump’s expected vote share exceeds 0.5, or equivalently,
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the probability that the average local unemployment rate exceeds 0.10:

Pr
h

bFavg (Ā,N, n) > 0.10
i

= 1� G
bFavg(Ā,N,n) (0.10)

⇡ 1� J

0

B

@

Ā,N, n,
0.10� EbFavg (Ā,N, n)
⇣

Var bFavg (Ā,N, n)
⌘1/2

1

C

A

= 0.0707,where bwi =
[d�

w (Ā)]i � ED�
w (Ā)

�

NVarD�
w (Ā)

�1/2 .

We have a closed-form approximation for G
bFavg(Ā,N,n) (t). The relevant vector of

agent weights here is the vector of average weighted in-degrees, d�
w (Ā).

Theorem 1.13 is quite flexible; it allows us to draw the CDF GX(Ā,N,n) (t) for

every feasible population size, network topology, and prevalence of the attribute.

It will also later enable us to provide a closed-form expression for the distribution

of outcomes for the economy. However, if agents’ weights are clustered over too

few values, then condition (c) does not hold and Theorem 1.13 no longer applies.

We therefore proceed to provide a theoretical result that allows us to construct

gX(Ā,N,n) (t) in closed form in certain settings when we are unable to apply the

findings of Theorem 1.13.

We consider an environment in which k
w

agents have the same non-zero

weight w and N � k
w

agents have zero weight. If we define the set I ,

I = {max {0, n� (N � k
w

)} ,max {0, n� (N � k
w

)}+ 1, . . . ,min {n, k
w

}} ,

we then have the following result:

Theorem 1.14 For all i 2 I ,

gX(Ā,N,n) (iw) =
(kw

i )(
N�k

w

n�i )

(Nn )
.

For all i /2 I , gX(Ā,N,n) (iw) = 0.
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In such a setting, the probability mass function is almost everywhere zero. There

are only finitely many values for which it is non-zero. Those values are integer

multiples of w, where the set of allowable integers i is restricted to those in set I .
The probability that the local relative frequency of the attribute equals iw is then

equal to the fraction of all possible configurations such that there are i individuals

with weight w and the attribute’s unit value and n� i individuals with weight zero

and the attribute’s unit value. When agent j equally weights each of his linkages on

the network, the resulting vector of agent weights, wa,j (Ā), takes this exact form

and Theorem 1.14 applies for constructing g
bFa,j(Ā,N,n) (t).

Appendix A.4 provides some additional results concerning the properties of

GX(Ā,N,n) (t). Appendix A.5 characterizes the statistical features of the multivariate

random variable bF(q) (Ā,N, n), whose realizations are bf(q) (Ā,b,N, n), the popula-

tion vector of weighted local relative frequencies of the attribute. Appendix A.6

identifies those vectors of agent weights and corresponding network topologies for

which VarX (Ā,N, n) is maximal. Appendix A.7 characterizes those vectors of agent

weights and those matrices, Ā, that generate identical distributions GX(Ā,N,n) (t) and

therefore identical distributions of outcomes for an economy. Lastly, Appendix A.8

conducts sensitivity analysis, studying how a perturbation to agents’ interaction

network affects GX(Ā,N,n) (t) via its effects on the relevant network-derived vector of

agent weights.

1.6.2 Non-Degeneracy of the Distribution GX(Ā,N,n) (t) for Very

Large N

We now examine how GX(Ā,N,n) (t) and its mathematical analogue G
bFavg(Ā,N,n) (t) can

remain approximately non-degenerate even as the population size grows very large.
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In Section 1.3, we studied the distribution, G
bFavg(Ā,N,n) (t), of possible average local

unemployment rates for a population of 137.5 million voters, given an October 2016

U-6 unemployment rate of 9.6 percent and an interaction network characterized

by the composite graph. We observed strong configuration dependence of the

average local unemployment rate for very large N, with a standard deviation of

0.266 percentage points. We identified two different ways for understanding such

strong configuration dependence: (1) high variance of in-degrees for the composite

graph, and (2) heavy-tailedness in the distribution of agent weights, that is, heavy-

tailedness in the distribution of average weighted in-degrees, GD�
w (Ā) (t), for the

composite graph. We now show how properties (1) and (2) of the composite graph

generate a strongly non-degenerate distribution, G
bFavg(Ā,N,n) (t), even for large N.

We first show how high variance of in-degrees for the composite graph

generates an approximately non-degenerate distribution, G
bFavg(Ā,N,n) (t), of possible

average local unemployment rates. To demonstrate this relationship, we must

slightly modify the structure of the composite graph. We require voters to assign an

equal weight to each of their observations, so that non-zero elements for each row

of Ā take the same value; this assumption happens to be one that we were already

making when carrying out analysis in Section 1.3. We also require every agent to

have the same out-degree, k, setting k = 1
N1Td� (A).20 This latter assumption is

reasonable given that the standard deviation for the distribution of out-degrees is

just 18.4, while the standard deviation for the distribution of in-degrees is 8,633.3.

The next theorem makes explicit the relationship between the properties of the

in-degree distribution for the slightly modified composite graph and the properties

of bFavg (Ā,N, n):

20We allow k to be non-integral.
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Theorem 1.15 Let d+ (A) = k1 and let all non-zero matrix elements in each row of Ā

take the same value. Then, d�
w (Ā) = 1

Nk d
� (A), so

Var bFavg (Ā,N, n) =
n
N

⇣

1� n
N

⌘ N
N � 1

N
✓

1
Nk

◆2
VarD� (A) .

Construct the ordered multiset {vs}Ns=1 from the elements of d� (A) so that vs  vs0

whenever s  s0. The lower and upper bounds on the support of bFavg (Ā) are respectively

min supp bFavg (Ā,N, n) =
1
Nk

n

Â
s=1

vs and max supp bFavg (Ā,N, n) =
1
Nk

N

Â
s=N�n+1

vs.

Every quantity of interest in Theorem 1.15 directly depends on the composite

graph’s in-degree distribution. For a fixed number of edges, the greater the variance

of the graph’s in-degrees, the greater the variance of bFavg (Ā,N, n). We compute

Var bFavg (Ā,N, n) and the bounds on the support for bFavg (Ā,N, n) using the expres-

sions from Theorem 1.15. We find that the standard deviation of bFavg (Ā,N, n) is

0.00307, the minimal bound on the support of bFavg (Ā,N, n) is 0.0528, and the maxi-

mal bound on the support of bFavg (Ā,N, n) is 0.366. These values are quite similar

to the ones that we computed exactly before, with a standard deviation of 0.00266, a

minimal bound of 0.0553, and a maximal bound of 0.333. The approximate relation

between d�
w (Ā) and d� (A) for the composite graph explains why the shape of

GD�
w (Ā) (t) in Figure 1.8 is very similar to the shape of GD�(A) (t) in Figure 1.7.

With bwi =
[d�

w (Ā)]i�ED�
w (Ā)

(NVarD�
w (Ā))

1/2 , we can approximate G
bFavg(Ā,N,n)�EbFavg(Ā,N,n)

(Var bFavg(Ā,N,n))1/2
(t) by

the function J (Ā,N, n, t):

J (Ā,N, n, t) = F (t)� H2 (t) f (t)C1

⇣

N�1/2 SkewD� (A)
⌘

� H3 (t) f (t)


C2

⇣

N�1 Excess KurtosisD� (A)
⌘

� 1
4N

�

� H5 (t) f (t)C3

⇣

N�1 �SkewD� (A)
�2
⌘

,
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with quantities C1, C2, C3,, f (t), and Hi (t) f (t) defined in Theorem 1.13. The

distribution of in-degrees shapes the CDF G
bFavg(Ā,N,n) (t), and it therefore shapes

the distribution of outcomes for the economy.

We now remove the previous two restrictions on the structure of the com-

posite graph. We show, in general, how heavy-tailedness in a distribution of agent

weights generates a distribution, GX(Ā,N,n) (t), that is non-degenerate even for very

large N. We introduce random variable eWi (Ā) with non-negative support. eWi (Ā)

denotes the effective representation of agent i in the population. This mass equals

1 on average for each agent, hence E eWi (Ā) = 1. Here, we assume that random

variables eWi (Ā) for i 2 {1, . . . ,N} are independent and identically distributed.21

The CDF from which the eWi (Ā)’s are drawn is G
eW(Ā) (t) = GW(Ā)⇥N (t), the distri-

bution of network-derived agent weights scaled by N. X (Ā,N, n) is constructed

by drawing n values eWi (Ā) from G
eW(Ā) (t) and designating those agents as the

ones with the attribute’s unit value: X (Ā,N, n) =
eW1(Ā)+···+ eWn(Ā)

N . We then have

the following result:

Theorem 1.16 Suppose that Var eWi (Ā) is finite. Then as n,N ! • holding f = n
N

fixed,

n1/2
✓

1
f
X (Ā,N, n)� E eWi (Ā)

◆

��!
d

N
⇣

0, Var eWi (Ā)
⌘

where E eWi (Ā) = 1. Next suppose that Pr
h

eWi (Ā) > t
i

⇠ L (t) t�x , where L (t) is a

slowly-varying function and x 2 (1, 2). Then as n,N ! • holding f = n
N fixed,

n1�1/x

✓

1
f
X (Ā,N, n)� E eWi (Ā)

◆

��!
d

eS (x, b, eg, 0; 1) ,

where eS (x, b, eg, 0; 1) is a stable distribution and E eWi (Ā) = 1.

21In reality, the random variables eWi (Ā) are not independent, as they are constrained to sum to
N: eW1 (Ā) + · · ·+ eWN (Ā) = N.

75



www.manaraa.com

When x 2 (1, 2), agent weights are power-law distributed with a finite

mean and infinite variance.22 Empirically estimating the power-law exponent, we

find that x ⇡ 1.69 2 (1, 2). This exponent emerges from the right tail of the

counter-cumulative distribution function of agents’ effective representations in the

population, where eW (Ā) = W (Ā) ⇥ N and an agent’s weight is equal to that

agent’s average weighted in-degree for the composite graph. With n1�1/x < n1/2

for all x 2 (1, 2), the distribution for X (Ā,N, n) collapses faster to a degenerate

distribution as N ! • when agent weights have a finite variance than when they

are drawn from a power-law distribution with infinite variance. The rate at which

the law of large numbers applies is relatively slower in this latter case, so the

variance of X (Ā,N, n) becomes non-negligible even at extremely large population

sizes, N. Accordingly, in the setting of Section 1.3, distribution G
bFavg(Ā,N,n) (t) is

approximately degenerate for N = 137.5 million when the underlying interaction

network is the base graph, but it is approximately non-degenerate for N = 137.5

million when the underlying interaction network is the composite graph.

We see that economies with all possible population sizes can be configuration

dependent. Even in large-N settings, the aggregate properties of the system are

not sufficient to determine how the economy will evolve. We need to account for

the configuration dependence of the system so that we can construct the entire

distribution of possible outcomes.

22The literature tends to use a instead of x, but the former variable has already been assigned a
different interpretation in this chapter.
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1.7 Features of the Precursor Distribution When Con-

figurations are Not Equally Likely

We continue to characterize the precursor distribution of possible local relative

frequencies of the attribute given the economy’s aggregate feature, f = n
N . However,

we relax the assumption that every configuration b (N, n) 2 B (N, n) of the attribute

is equally likely. Before, when each configuration of the attribute was equally likely,

every agent i had the same probability of bi = 1. Now, every agent i in the system

has an arbitrary probability that bi = 1, so configurations can occur with any relative

likelihood. In this relaxed setting, we solve for the first two moments of the resulting

probability distribution of local relative frequencies of the attribute.

We let each agent i have a vector of characteristics, gi, that can impact

fi = Pr [Bi = 1| gi], the conditional probability that agent i has the binary-valued

attribute’s unit value. Bi is a random variable whose realization is agent i’s binary-

valued attribute: 0 or 1. We partition agent indices into Q categories according to

their conditional probabilities, so that agents i, j are in category q if fi = fj = r

q

.

We define the odds ratio for agents in category q relative to category k as follows:

b

y

q

=
r

q

1�r

q

rk
1�rk

, with byk ⌘ 1. Then:

Theorem 1.17 The first two moments of X
⇣

Ā,N, n, (gi)
N
i=1

⌘

are:

EX
⇣

Ā,N, n, (gi)
N
i=1

⌘

=
N

Â
i=1

[w (Ā)]i [µ]i

and VarX
⇣

Ā,N, n, (gi)
N
i=1

⌘

= [w (Ā)]T S [w (Ā)] .

To compute the N ⇥ 1 vector µ and the N ⇥ N matrix S, define the Q ⇥ 1 vector bµ across

the Q categories; set [µ]i = [bµ]
q

for each agent i from category q. Also introduce the N ⇥ 1

vector z, setting [z]i = [bµ]
q

(1� [bµ]
q

) for each agent i from category q. Define the Q ⇥ Q
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matrix bS with element
h

bS
i

qk
equal to the conditional covariance Cov

�

Bi, Bj
�

between

agent i in category q and agent j in category k and element
h

bS
i

qq

equal to the conditional

variance Var Bi for agent i in category q. µ and S can be approximated by solving the

following system of equations:

Q

Â
q=1

Â
i2{1,...,N}
s.t. fi=r

q

[bµ]
q

= n

b

y

q

=
[bµ]

q

(1� [bµ]k)�
h

bS
i

qk

(1� [bµ]
q

) [bµ]k �
h

bS
i

qk

, 8q 2 {1, . . . ,Q} \ {k}, and

S =
N

N � 1

 

diag z � zzT

1Tz

!

.

The N ⇥ 1 random vector B, whose ith element is random variable Bi, is

distributed according to Fisher’s multivariate non-central hypergeometric distri-

bution. µ = EB is the N ⇥ 1 conditional mean vector for B and S is the N ⇥ N

conditional covariance matrix for B. B, µ, and S are quantities that correspond to

the population of N agents. We can also introduce parallel hatted quantities that

correspond to the Q distinct categories. If we define a Q⇥ 1 random vector bB, whose

q

th element is random variable Bi from category q, then bµ = EbB is the corresponding

Q ⇥ 1 conditional mean vector for bB and bS is the corresponding Q ⇥ Q conditional

covariance matrix for bB; diagonal element
h

bS
i

qq

is the conditional variance Var Bi

for agent i in category q. We also introduce the Q ⇥ 1 vector bSCov; the q

th element
h

bSCov
i

q

of this vector is the conditional covariance Cov
�

Bi, Bj
�

for agent i and agent

j, i 6= j, both in category q.

When the population of agents can be partitioned into Q categories, the total

number of variables and the total number of equations in the system both equal

2Q + (Q
2 ) + ÂQ

q=1 1s
q

>1, where s
q

is the number of agents in category q. There are

Q variables [bµ]
q

, the conditional mean EBi for agent i in category q. There are Q
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variables
h

bS
i

qq

, the conditional variance Var Bi for agent i in category q. There are

(Q
2 ) variables

h

bS
i

qq

0 for q 6= q

0, the conditional covariance Cov
�

Bi, Bj
�

for agent i

in category q and agent j in category q

0. Lastly, there are ÂQ
q=1 1s

q

>1 variables
h

bSCov
i

q

; when there is more than one agent in category q, we must also compute

the conditional covariance Cov
�

Bi, Bj
�

for agent i and agent j in category q. We

construct µ from the elements of bµ and we construct S from the elements of bS and

bSCov.

When fi = Pr [Bi = 1| gi] differs across agents, EX
⇣

Ā,N, n, (gi)
N
i=1

⌘

no

longer must equal the global relative frequency of the attribute, f . The weighted

local relative frequency of the attribute can, on average, be either greater or less

than f . In the social learning setting, when configurations are not equally likely,

it may not be possible for there to be asymptotic convergence to the truth, as the

mean of the distribution of X
⇣

Ā,N, n, (gi)
N
i=1

⌘

need not equal f for all iterations of

learning q and all population sizes N, even as q,N ! •. When configurations are

no longer equally likely to occur, we can induce bias in EX
⇣

Ā,N, n, (gi)
N
i=1

⌘

away

from the global relative frequency, f .

The next example works through the null case, in which every configuration

is equally likely; it computes the first two moments of X
⇣

Ā,N, n, (gi)
N
i=1

⌘

when

Q = 1, following Theorem 1.17:

Example 1.7 (First Two Moments of X
⇣

Ā,N, n, (g
i

)N
i=1

⌘

, Q = 1) Consider an eco-

nomic system with N agents. When Q = 1, so that fi = r1 for every agent i 2 {1, . . . ,N},
EX

⇣

Ā,N, n, (gi)
N
i=1

⌘

= EX (Ā,N, n) andVarX
⇣

Ā,N, n, (gi)
N
i=1

⌘

= VarX (Ā,N, n),

where X (Ā,N, n) is the random variable of interest when every configuration

b (N, n) 2 B (N, n) is equally likely.

When Q = 1 we recover the first two moments EX (Ā,N, n) and VarX (Ā,N, n)
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that we studied in Section 1.6 when every configuration was equally likely. The

corresponding derivation is in Appendix A.9.

In the more general setting, we can characterize these first two moments for

particular cases of X
⇣

Ā,N, n, (gi)
N
i=1

⌘

, such as bFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

and

bF(•)
⇣

Ā,N, n, (gi)
N
i=1

⌘

; we simply follow Theorem 1.17 and make the necessary

substitutions. Appendix A.9 studies three different economies with Q 6= 1. The first

economy features N = 4 agents and Q = 2 categories of agents; we compute the

first two moments of bFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

. The second economy features N = 15

agents and Q = 3 categories of agents; we compute the first two moments of

bF(•)
⇣

Ā,N, n, (gi)
N
i=1

⌘

. The third economy revisits the setting of Section 1.3 and

Example 1.4, in which there are N = 137.5 million voters deciding which 2016 U.S.

presidential candidate to elect. Here, we have Q = 2 categories of agents: (1) those

featured by the media, and (2) those not featured by the media. Setting r1 = 0.50

and r2 = 0.096, Appendix A.9 shows how to compute EbFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

=

0.194 and Std. Dev. bFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

= 0.00452, the first two moments of the

distribution of possible average local unemployment rates given that the actual

unemployment rate, f , is 0.096. In all settings, the first two moments of the

distribution deviate from the ones that would occur when configurations are equally

likely.

1.8 The Distribution of Outcomes for the Economy

Thus far, we have developed the mathematics that enables us to characterize the

distributional features of X (Ā,N, n) and X
⇣

Ā,N, n, (gi)
N
i=1

⌘

. In this section, we

compute the distribution of possible outcomes for the economy. For certain classes

of agent actions, we can provide a closed-form expression for the distribution of
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possible outcomes. We already demonstrated in Section 1.3 how to compute such

a distribution of possible outcomes for the economy. In that setting, agents made

a voting decision based on their locally formed macroeconomic sentiments; we

computed both the probability that the election outcome favored candidate Clinton

and the probability that the election outcome favored candidate Trump. In this

section, we show how to construct the distribution of possible outcomes for the

economy when agents follow other decision-making rules. The classes of agent

decision-making rules that we identify and study in this section are certainly not

exhaustive.

Before we can study the distribution of possible outcomes for the econ-

omy, we must introduce some additional notation. Constructing this distribution

requires us to incorporate agents’ decision-making behavior, so much of the no-

tation concerns agent actions. We assume that each agent i chooses an action,

ai (Ā,b,N, n), that depends on his or her local relative frequency of the attribute:

ai (Ā,b,N, n) = hi (xi (Ā,b,N, n)) . hi (·) is a function that specifies how agent i re-

sponds to his or her weighted local relative frequency of the attribute, xi (Ā,b,N, n),

where xi (Ā,b,N, n) = [wi (Ā)]T b (N, n). Since agents may respond to different

local relative frequencies of the same attribute, we index by agent the quantity

xi (Ā,b,N, n) and the vector of agent weights wi (Ā).

We are interested in the individual action ai (Ā,b,N, n) and how it varies

with configuration given f , and we are also interested in the population’s aggregate

action aagg (Ā,b,N, n) = ÂN
i=1 ai (Ā,b,N, n) and how that quantity varies with con-

figuration given f . We define random variables Ai (Ā,N, n) and Aagg (Ā,N, n) with

respective configuration-specific realizations ai (Ā,b,N, n) and aagg (Ā,b,N, n). In

this section, we study the distributions of Ai (Ā,N, n) and Aagg (Ā,N, n). When each

configuration of an attribute is equally likely to occur, random variable Ai (Ā,N, n)
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has CDF: GAi(Ā,N,n)(t) =
1

|B(N,n)| Âb(N,n)2B(N,n) 1ai(Ā,b,N,n)t, and random variable

Aagg (Ā,N, n) has CDF: GAagg(Ā,N,n)(t) =
1

|B(N,n)| Âb(N,n)2B(N,n) 1aagg(Ā,b,N,n)t.

1.8.1 The Distribution of Outcomes Given the Action of Agent i

We compute the distribution of possible outcomes for the economy when the

relevant object is the action of agent i. Therefore, we study agent i’s action,

ai (Ā,b,N, n), and we seek to characterize the distribution GAi(Ā,N,n) (t). We fo-

cus on the case in which agents’ weights are such that they satisfy condition (c)

of Theorem 1.13. We can write an expression for the distribution GAi(Ā,N,n) (t)

provided that agent i’s action, ai (Ā,b,N, n) = hi (xi (Ā,b,N, n)), is invertible over

the domain xi (Ā,b,N, n) 2 [0, 1].23 Our expression for GAi(Ā,N,n)(t) is then:

GAi(Ā,N,n)(t) = GXi(Ā,N,n)

⇣

h�1
i (t)

⌘

⇡ J

 

Ā,N, n,
h�1
i (t)� EXi (Ā,N, n)

(VarXi (Ā,N, n))1/2

!

,

where EXi (Ā,N, n) = n
N , VarXi (Ā,N, n) = n

N
�

1� n
N
� N

N�1 (NVarWi (Ā)), and

bwj =
[wa,i(Ā)]j�EWa,i(Ā)

(NVarWa,i(Ā))
1/2 . When agent i’s action takes an affine form:

ai (Ā,b,N, n) = hi (xi (Ā,b,N, n)) = aixi (Ā,b,N, n) + bi,

23To see why there exists a closed-form expression for GAi(Ā,N,n) (t) when agent i’s action,
ai (Ā,b,N, n) = hi (xi (Ā,b,N, n)) is invertible, follow the derivation below:

GAi(Ā,N,n)(t) = Pr [Ai (Ā,N, n)  t]

= Pr [hi (Xi (Ā,N, n))  t] , with suppXi (Ā,N, n) 2 [0, 1]

= Pr
h

Xi (Ā,N, n)  h�1
i (t)

i

= GXi(Ā,N,n)

⇣

h�1
i (t)

⌘

⇡ J

 

Ā,N, n,
h�1
i (t)� EXi (Ā,N, n)

(VarXi (Ā,N, n))1/2

!

.
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action ai (Ā,b,N, n) is invertible with respect to xi (Ā,b,N, n), so we can ex-

press GAi(Ā,N,n)(t) in closed form: GAi(Ā,N,n)(t) ⇡ J

 

Ā,N, n,
t�bi

ai
�EXi(Ā,N,n)

(VarXi(Ā,N,n))1/2

!

=

J
✓

Ā,N, n, t�EAi(Ā,N,n)
(Var Ai(Ā,N,n))1/2

◆

. By computing the mean action for agent i,

EAi (Ā,N, n) = ai
n
N + bi, and we see that the distribution of possible outcomes

for the economy, GAi(Ā,N,n)(t), is centered about the outcome in which configura-

tion is irrelevant and only the aggregate feature of the economy, f = n
N , matters.

Appendix A.10 features two examples that solve for GAi(Ā,N,n)(t) and its distri-

butional characteristics in closed form. For the first example, agent i’s action is

an affine transformation of the weighted local relative frequency of the attribute,

ai (Ā,b,N, n) = ai bfi (Ā,b,N, n) + bi, and for the second example, agent i’s ac-

tion nonlinearly depends on the weighted local relative frequency of the attribute,

ai (Ā,b,N, n) = ai log bf
(q)
i (Ā,b,N, n) + bi. In both settings, we can write a closed-

form expression for GAi(Ā,N,n)(t), the distribution of possible outcomes for the

economy, for every feasible population size, network topology, and prevalence of

the binary-valued attribute’s unit value in the population.

1.8.2 The Distribution of Outcomes Given the Aggregate Action

We now compute the distribution of possible outcomes for the economy when the

relevant object is the aggregate action. We therefore study the aggregate action,

aagg (Ā,b,N, n), with an interest in characterizing the distribution GAagg(Ā,N,n) (t).

We assume that agents’ weights are such that they satisfy condition (c) of Theo-

rem 1.13. To characterize GAagg(Ā,N,n) (t) in closed form, we focus on particular

classes of agent actions.

Our main class of agent actions is the one in which individual agents’ ac-

tions take an affine form: ai (Ā,b,N, n) = ai bfi (Ā,b,N, n) + bi, 8i 2 {1, . . . ,N} .
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We can then write a closed-form expression for GAagg(Ā,N,n) (t) for every feasi-

ble population size, underlying network topology, and global relative frequency

of the attribute. Observe that the mean aggregate action, EAagg (Ā,N, n), and

therefore the mean outcome for the economy, is the one that occurs when the

system is invariant to configuration and only the aggregate feature of the system

matters. The extent to which the aggregate action can deviate away from this

mean aggregate action determines how dependent the system is on configuration.

When ai = a for all agents, GAagg(Ā,N,n)(t) ⇡ J
✓

Ā,N, n, t�aNEbFavg(Ā,N,n)�1Tb

aN(Var bFavg(Ā,N,n))
1/2

◆

, with

J (·) defined in Theorem 1.13 and bwi =
[d�

w (Ā)]i�ED�
w (Ā)

(NVarD�
w (Ā))

1/2 . When agents no longer

have a common coefficient a, GAagg(Ā,N,n)(t) ⇡ J
✓

Ā,N, n, t�(1Ta)EbFavg(bA,N,n)�1Tb

(1Ta)(Var bFavg(bA,N,n))
1/2

◆

,

with J (·) defined in Theorem 1.13, bwi =
[bd�

w(bA)]i�E bD�
w (bA)

(NVar bD�
w (bA))

1/2 ,
h

bA
i

ij
= ai [Ā]ij, and

bd�
w

⇣

bA
⌘

=
⇣

1
a1+···+aN

⌘

bAT1. Appendix A.10 solves for GAagg(Ā,N,n) (t) and its distri-

butional features for these two settings, when agents have a common coefficient a

and when agents no longer have a common coefficient a.

When agents’ actions instead depend on the consensus local relative fre-

quency of the attribute, there exists an even larger class of decision rules for which

we can write a closed-form expression for GAagg(Ā,N,n) (t). If agent actions follow a

threshold rule:

ai (Ā,b,N, n) =

8

>

>

<

>

>

:

bi if bf (•) (Ā,b,N, n) � a

0 if bf (•) (Ā,b,N, n) < a

, then

Aagg (Ā,N, n) ⇡

8

>

>

>

<

>

>

>

:

1Tb with probability 1� J
✓

Ā,N, n, a�EbF(•)(Ā,N,n)

(Var bF(•)(Ā,N,n))
1/2

◆

0 with probability J
✓

Ā,N, n, a�EbF(•)(Ā,N,n)

(Var bF(•)(Ā,N,n))
1/2

◆

,

with J (·) defined in Theorem 1.13 and bwi =
[w•(Ā)]i�EW•(Ā)

(NVarW•(Ā))1/2
.
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Even if we cannot express GAagg(Ā,N,n) (t) in closed form, we can still solve

for its lower-order features. If agent i’s action, 8i 2 {1, . . . ,N}, follows a different

threshold rule:

ai (Ā,b,N, n) =

8

>

>

<

>

>

:

bi if bfi (Ā,b,N, n) � a

0 if bfi (Ā,b,N, n) < a

,

we can solve for EAagg (Ā,N, n) in closed form:

EAagg (Ā,N, n) ⇡
N

Â
i=1

bi

2

6

4

1� J

0

B

@

Ā,N, n,
a � EbFi (Ā,N, n)

⇣

Var bFi (Ā,N, n)
⌘1/2

1

C

A

3

7

5

,

with J (·) defined in Theorem 1.13 and bwj =
[wa,i(Ā)]j�EWa,i(Ā)

(NVarWa,i(Ā))
1/2 . Appendix A.10

studies in greater detail these two cases in which agent actions follow a threshold

rule.

Given agents’ decision-making behavior, we are able to both construct the

distribution of possible outcomes for the economy and study the distribution’s statis-

tical features. We can assess the non-degeneracy of the distribution of outcomes and

therefore determine the extent to which the economy is dependent on configuration.

When the outcome of the economy strongly varies with configuration, the economy’s

aggregate feature, f , is no longer sufficient for determining how the economy will

evolve, and agents’ local interactions and local environments matter for the behavior

of the overall economy. For various classes of agent decision-making rules, we can

write closed-form expressions for GAi(Ā,N,n) (t) and GAagg(Ā,N,n) (t) for any feasible

population size, network topology, and aggregate feature, and we can study how

the statistical features of the distributions GAi(Ā,N,n) (t) and GAagg(Ā,N,n) (t) emerge

from the topology of agents’ interaction network.
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1.9 Conclusion

In this chapter, we develop a set of mathematical tools that allows us to map network

structures to probability distributions. Given agents’ decision-making behavior, we

are able to map the specific topology of agents’ interaction network to a specific

probability distribution of possible outcomes for the economy. We first map the

structure of agents’ network, G (Ā), to a precursor distribution, GX(Ā,N,n) (t), of

possible local relative frequencies of the binary-valued attribute. Then, given agents’

decision-making behavior and the precursor distribution, GX(Ā,N,n) (t), we construct

the distribution of possible outcomes for the economy.

Our characterization of GX(Ā,N,n) (t) is complete. For all population sizes,

feasible network structures, and possible global prevalences of the attribute in the

population, we can solve for the distributional features of GX(Ā,N,n) (t) in closed

form, and we can provide a closed-form expression for the actual shape of this

probability distribution. Our mathematical tools show how network primitives and

other features of the underlying network directly generate probability distributions

with certain statistical features. Meanwhile, for particular classes of agent actions,

we can write a closed-form expression for the distribution of possible outcomes

for the economy as well; for a larger set of agent actions, we can solve for the

lower-order features of this distribution in closed form. When this distribution is

non-degenerate, the particular configuration of the attribute among agents matters

for how the economy evolves.

The tools and content developed in this work have several implications. First,

these mathematical tools enable closed-form analysis of complex economic systems.

Such tools allow us to map complex agent interactions into a simple probability dis-

tribution characterizing how the system will probabilistically evolve. Second, these
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mathematical tools allow us to quantify how dependent an aggregate economic

system is on the underlying configuration of an attribute among its agents. Aggre-

gate treatments of economic systems put forth a single outcome for the economy,

but if the economic system is configuration dependent, there is actually an entire

non-degenerate distribution of possible outcomes for the economy consistent with

the aggregate properties of the system. The tools of this work allow us to construct

in closed form an error bound about the original benchmark outcome of the aggre-

gate economy. Third, the theoretical framework of this work and the accompanying

mathematical tools help us to understand locally formed macroeconomic sentiment.

This work offers a microfoundation for animal spirits, showing how agents’ inter-

action structure enables the existence of swings in aggregate sentiment for fixed

economic fundamentals that persist even for large-N economies. Chapter 2 of this

dissertation utilizes and extends the mathematical tools and theoretical framework

developed in this work for an entirely different economic application. Hopefully the

theoretical tools and methodology developed in the present chapter can be broadly

used to provide insights in diverse settings.

87



www.manaraa.com

Chapter 2

The Distribution of Multipliers in a

Networked Economy

2.1 Introduction

There are many economic settings in which agents are networked and the actions

that agents take are interdependent. The complexities of such network-based

agent interactions can make it difficult to ascertain in advance the effects of a

planned policy on agents’ aggregate behavior. Given that it is difficult to ascertain

the aggregate action in advance, it is also difficult to predict the policy-specific

economic multiplier; this latter quantity measures the change in the aggregate

action arising from implementation of the planned policy. The present chapter

shows how to compute the effects of a planned policy on the aggregate action

and how to determine the policy’s economic multiplier. For each policy, given

agents’ decision-making behavior and the topology of agents’ interaction network,

there are entire probability distributions of possible aggregate actions and economic

multipliers. This chapter develops and applies a set of theoretical tools so that we
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can explicitly map the planned policy to the corresponding probability distributions

of possible aggregate actions and economic multipliers.

In this work, we focus on a population of N networked agents, each of

whom chooses an action, and an outside actor. The outside actor is interested in the

population’s aggregate action. In particular, the outside actor would like to adjust the

aggregate action and therefore chooses a policy with that intention. We can imagine

that this actor would like to increase the aggregate action above its no-intervention

level. There are many different real-world settings that parallel the theoretical setting

of the present work, with its N networked agents and outside actor interested in

increasing the aggregate action. The outside actor might be a government interested

in jump-starting its economy during a recession; the government would like to

provide stimulus to a set of firms organized on a production network with the

intention of increasing aggregate output. The outside actor might alternatively be a

nonprofit organization, such as a cancer research foundation; the foundation would

like to increase the amount of innovative activity in cancer research. To achieve this

goal, it allocates funds to research groups who are organized on both formal and

informal R&D networks; the linkages of these networks capture both collaboration

and competition among research groups.

There are many different classes of policies that the outside actor can im-

plement. In this work, we focus on one type of policy. Here, when a policy gets

enacted, the outside actor transmits a positive shock of e magnitude to n  N

agents. Such a shock can be a positive wealth shock, in which the outside actor

provides e > 0 units of additional wealth to n agents. In general, though, the exact

interpretation of the shock depends on the environment. There are two different

ways that the outside actor can finance its policy. The outside actor can either

gather funds from the other networked agents in the population, or it can receive
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funds from agents who are outside of the system. We refer to the former case as a

setting with internally provided transfers, and we refer to the latter case as a setting

with externally provided stimulus. The internal transfers might be implemented

via taxation, while the external stimulus might originate from issuance of debt or

donation. In the setting with transfers, the financing agents receive a negative shock,

so the net adjustment that the policy initially induces for all agents in the population

is zero.

When issuing a policy, the outside actor chooses both n and the method

of financing. Therefore, given a particular policy, we can introduce a binary-

valued attribute that identifies which agents have received a positive shock; we

assign the attribute’s unit value to the n agents targeted by the policy, while we

assign the attribute’s zero value to the other N � n agents. This assignment of

positive shocks to n agents represents a particular configuration of positive shocks;

specifically, the configuration identifies the indices for the subset of n agents who

have the attribute’s unit value. Given that a policy targets n agents, there are

(Nn ), or combinatorially many, total possible configurations of positive shocks. For

each configuration, a different group of agents receives the positive shock. Agents’

actions are interdependent, so the aggregate action and economic multiplier can

vary depending on which group of agents actually receives the positive shock.

Accordingly, holding both n and the method of financing fixed, we can construct

an entire distribution of possible aggregate actions and an entire distribution of

possible economic multipliers.

When the outside actor is planning to issue a policy targeting n agents, the

actor is interested in the full range of possible outcomes. As a result, both the

distribution of possible aggregate actions and the distribution of possible economic

multipliers are the relevant theoretical objects of interest. We can alternatively
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imagine that the outside actor knows the set of agents that it would like to target,

but it does not know which nodes on the network these agents occupy. In such

circumstances, the distribution of possible aggregate actions and the distribution of

possible economic multipliers constructed from all feasible configurations are also

the appropriate objects of interest. We can separately imagine that the outside actor

selects agents at random for receipt of a positive shock; the outside actor would

then like to know the distribution of possible aggregate actions and the distribution

of possible economic multipliers as well. Across all scenarios, the outside actor

has a sense of the topology for the underlying agent interaction network. If the

outside actor does not quite know the underlying network’s topology, it can carry

out sensitivity analysis, perturbing different features of the underlying network

and examining how these perturbations shift the policy-induced distributions of

possible aggregate actions and economic multipliers.

In this work, we develop a large body of theoretical results. These results

explicitly show how the outside actor’s policy generates the probability distributions

of possible aggregate actions and economic multipliers. We are able to map the

outside actor’s policy to two simple probability distributions even though agents’

interactions are complex. Given agents’ decision-making behavior, we can char-

acterize these probability distributions for every feasible policy, that is, for every

feasible number of agents being targeted by the policy, n, and for both methods of

financing. The shapes of these probability distributions fundamentally depend on

the population size of networked agents, N, the number of agents being targeted by

the policy, n, and the topology of agents’ interaction network; our theoretical results

explicitly show how each of these quantities impacts the statistical features for our

distributions.

We characterize in closed form the main statistical features as well as the
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CDFs for both the distribution of aggregate actions and the distribution of economic

multipliers. We solve for the first two moments of these distributions. We find

that, in settings with transfers, the mean aggregate action is always equal to its

no-intervention level and the mean economic multiplier is always equal to zero.

On average, the outside actor’s policy has no effect. In settings with stimulus,

however, the mean aggregate action can deviate from its no-intervention level, and

the mean economic multiplier can deviate from zero. We also present closed-form

expressions for the second moments of these distributions. These second moments

determine how much risk is entailed in enacting a particular policy. We find that the

second moments for these distributions depend on the variance of average weighted

in-degrees for a network that is a mathematical transformation of the original agent

interaction structure. Beyond these first two moments, we provide closed-form

expressions for the lower and upper bounds on the supports of the distributions

of aggregate actions and economic multipliers. Given a particular policy, we are

able to determine both the worst and the best possible outcomes, and we can show

how these values depend on the topology of the underlying network. We develop a

theoretical result that essentially allows us to draw the CDFs for the distributions

of aggregate actions and economic multipliers. From this result, we can see how

the topology of the mathematically transformed network generates properties of

skewness and/or heavy-tailedness in the distributions of aggregate actions and

economic multipliers. If these distributions are heavy-tailed, extreme values for the

aggregate action and economic multiplier can be more likely than the outside actor

might have otherwise thought. Meanwhile, in the setting with transfers, skewness

in the distribution of economic multipliers might mean that the probability of a

negative multiplier is greater than the probability of a positive multiplier, which

can make implementation of the policy less attractive. We can characterize the
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distributions of aggregate actions and economic multipliers in the limit as N ! •

as well. All of these theoretical results equip the policy-making actor with the tools

that it might need to evaluate the effects and pitfalls of implementing particular

policies in networked environments.

We develop and present all of these theoretical results for a general net-

worked environment. We then proceed by studying three specific environments

with network-based interaction: (1) networked environments with strategic com-

plements and strategic substitutes, (2) networked environments with coordination

and anti-coordination, and (3) networked environments with production. All of

the results from the general environment apply to these three broad classes of

environments. When we develop the general set of results, we introduce two free

parameters into the theory: a matrix and a scalar quantity. For each of the three

networked environments, specific expressions for these two parameters naturally

emerge. The general theoretical results therefore nest the specific theoretical re-

sults for each of the three networked environments, and the mathematics ends up

being the same. For each specific environment, we develop additional theoretical

results. We identify the topologies of those networks for which the distributions

of aggregate actions and economic multipliers are exactly degenerate; then, both

the aggregate action and the economic multiplier are invariant to configuration.

When possible, we identify the network structures that deliver the highest feasible

economic multiplier and the lowest feasible economic multiplier. We moreover rank

networks so that the distributions of aggregate actions and economic multipliers

for relatively higher-ranked networks first-order stochastically dominate the distri-

butions of aggregate actions and economic multipliers for relatively lower-ranked

networks. Consequently, the higher-ranked the network, the more effective the

policy.
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Quite importantly, for both the general networked environment and the three

specific networked environments, we show how to compute in closed form the

probability that the aggregate action ends up being below its no-intervention level

and the economic multiplier ends up being negative. The outside actor chooses

to implement a policy with the intention of increasing the aggregate action, but

depending on the topology of agents’ interaction network, there can be a non-

negligible probability that the policy ends up being harmful. Indeed, in settings

with transfers, provided that agents’ weights are not all equal, there is always a

positive probability of a negative multiplier for every level n; agents’ weights here

are equal to the average weighted in-degrees for the mathematically transformed

network. Whenever agents’ interaction network is non-trivial, negative multipliers

emerge naturally, especially in settings with transfers but also in settings with

stimulus. By being able to compute the probability of a negative multiplier in closed

form, the outside actor can better assess the risks inherent in enacting a particular

policy.

2.1.1 Relation to the Literature

This work interfaces with four different areas of the literature: research on (1)

networks, (2) economic complexity, (3) economic multipliers, and (4) fiscal stimulus.

Throughout the present work, agent interaction is organized on networks. In particu-

lar, for environments featuring strategic complements and strategic substitutes, and

environments featuring coordination and anti-coordination, agents choose actions

by playing games on networks. The recent literature on network games includes

work by Ballester, Calvó-Armengol, and Zenou (2006), Galeotti et al. (2010), Jackson

and Yariv (2011), Jackson and Zenou (2015), and Jackson, Rogers, and Zenou (2017).

The present work uses the structure of network games and the flexibility that they
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offer to study aggregate actions in a variety of environments and characterize how

aggregate actions adjust once the behavior of some subset of agents is perturbed.

The present work also studies environments with production networks. Recent

literature on production networks includes Acemoglu et al. (2012), Chaney (2014),

Acemoglu, Akcigit, and Kerr (2016), Barrot and Sauvagnat (2016), Boehm, Flaaen,

and Pandalai-Nayar (2017), and Oberfield (2018). Several of these papers study the

transmission of shocks across production networks. In the present paper, shocks

are demand-originating; rather than the value of the shock be stochastic, as in other

work, shocks in the present work are fixed in magnitude and they target a subset

of firms and/or sectors. Randomness here arises in the particular configuration of

firms and/or sectors actually receiving a positive shock given that the implemented

policy exactly targets n firms and/or sectors. Our object of interest is the probability

distribution of possible levels of aggregate output that result once a fixed number of

firms and/or sectors are targeted via a demand channel.

The theoretical environment of this work is complex. The present work

therefore engages strongly with past research on economic complexity, some of

which includes Topa (2001), Brock and Durlauf (2001a), and Brock and Durlauf

(2001b). These past papers all develop interactions-based models, with interactions

either being local or global social interactions. The present work focuses on local

interactions; it examines agent decision-making when interactions are defined locally

by an underlying network structure. Complexity in the present work emerges when

we look at the behavior of the aggregate action and the corresponding economic

multiplier after a policy targets n agents. Network-based interactions cause the

aggregate action to adjust more or less than the aggregate action would absent any

network-based interaction. The networked system moreover exhibits a degree of

nonlinearity. Given that a group of n agents has received an initial positive shock,
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as we incrementally increase the additional agents receiving that positive shock, the

sequence of changes in the aggregate action is, in general, very much nonlinear. The

present work also departs from past work in the area of economic complexity by

studying probability distributions. Rather than identifying a unique equilibrium,

this work characterizes probability distributions of possible equilibria, focusing on

aggregate actions in the economy and corresponding economic multipliers. We can

study how the structure of agents’ interaction network shapes the distribution of

aggregate actions and the distribution of economic multipliers. As in Chapter 1

of this dissertation, the present chapter condenses the complexities of agent-based

interactions into a probability distribution. Chapter 1 operates in a general setting; it

maps networks and agent actions to a probability distribution of possible outcomes

for the economy, given the global prevalence of some binary-valued attribute within

the population. The present work extends and applies the theoretical results from

Chapter 1, mapping networks and agents’ decision-making behavior to a distribution

of possible aggregate actions and economic multipliers; the binary-valued attribute

here denotes an agent’s receipt of a positive transfer or positive stimulus.

The two main objects studied in the present work are the aggregate action

and the corresponding economic multiplier. We define the economic multiplier

as the increase in the aggregate action that results when n agents each receive an

additional unit of a positive transfer or positive stimulus. The economic multiplier

therefore varies with configuration, and given n, we can construct the entire dis-

tribution of possible economic multipliers. Recent research concerning economic

multipliers focuses on social multipliers and network multipliers. Glaeser, Sac-

erdote, and Scheinkman (2003) and Calvó-Armengol and Zenou (2004) identify

social multipliers. They study the disconnect between aggregate-level behavior

and individual-level behavior, attributing that disconnect to social interactions;
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these two works therefore study the social multiplier effects that exist on individ-

ual decisions. Baqaee (2013), Carvalho (2014), and Acemoglu, Akcigit, and Kerr

(2016) meanwhile identify network multipliers. Carvalho (2014) and Acemoglu,

Akcigit, and Kerr (2016) study how the network structure of the economy amplifies

sector-specific volatility. Baqaee (2013) introduces an employment multiplier that

studies adjustments to equilibrium employment following sector-specific shocks;

the employment multiplier depends on the underlying structure of the network.

The present work enriches the existing literature on multipliers by studying and

characterizing entire distributions of multipliers whose values depend on agents’

interaction structure and the particular class of agent actions. This work additionally

introduces closed-form expressions that allow us to compute the probability that an

economic multiplier is negative.

Now, the present work studies an outside entity whose policy provides

positive transfers or positive stimulus to n agents in the system. If this outside

entity is indeed a government, then the types of policies that we are examining are

fiscal policies, and the positive shocks to the n agents in the system represent fiscal

stimulus. Research in the area of fiscal stimulus includes: Christiano, Eichenbaum,

and Rebelo (2011), Woodford (2011), Eggertsson (2011), Ilzetzki, Mendoza, and Végh

(2013), Nakamura and Steinsson (2014), Farhi and Werning (2016), Chodorow-Reich

(2018), and Hagedorn, Manovskii, and Mitman (2018). The Great Recession and

the handicapping of monetary policy during the zero-lower-bound environment

of the time sparked renewed interest in fiscal multipliers. On the theory side,

research has focused on mapping macroeconomic models with particular under-

lying assumptions and features to corresponding expressions for the government

expenditure multiplier. Such models include variants of neoclassical models, New

Keynesian models, open-economy models, closed-economy models, representative
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agent models, and heterogeneous agent models. Depending on the particular en-

vironment and how government spending is financed, the magnitude of the fiscal

multiplier differs. On the empirical side, recent work has sought to estimate the

value of the government spending multiplier in different environments; Nakamura

and Steinsson (2014) estimate an open-economy multiplier, and Chodorow-Reich

(2018) bounds the national government expenditure multiplier from estimates of

cross-sectional fiscal spending multipliers. These multipliers need not always be

positive. Ilzetzki, Mendoza, and Végh (2013) empirically estimate negative fiscal

multipliers in countries with high public debt ratios. Hagedorn, Manovskii, and Mit-

man (2018) show theoretically that tax-financed fiscal stimulus generates multipliers

whose magnitudes are smaller than those of fiscal multipliers financed externally

via issuance of debt. When the outside actor in our work is a government, the

economic multipliers that we study end up being fiscal multipliers. For a given level

of fiscal stimulus, which is either financed internally by tax or transfer or financed

externally, we can compute the entire non-degenerate distribution of possible fiscal

multipliers. The particular configuration of fiscal stimulus among economic agents

fundamentally matters. Through this work, we also introduce a new channel by

which fiscal multipliers can be negative: network-based interactions among agents

in the economy. We can illustrate how negative fiscal multipliers arise from natural

patterns of agent interaction, and we can quantify the probability that a particular

level of fiscal stimulus decreases aggregate output or the aggregate action below its

no-intervention level.

2.1.2 Outline of Chapter

Section 2.2 begins by introducing notation and definitions. It then proceeds to

develop a high-level unifying theoretical framework for the study of policy-induced
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distributions of aggregate actions and economic multipliers in a general networked

setting. The theoretical framework of Section 2.2 nests the specific networked

environments of Sections 2.3, 2.4, and 2.5. Section 2.3 focuses on distributions of ag-

gregate actions and economic multipliers in networked environments with strategic

complements and strategic substitutes. Section 2.4 characterizes the policy-induced

distributions of aggregate actions and economic multipliers in networked environ-

ments with coordination and anti-coordination. Section 2.5 studies the distributions

of aggregate output and economic multipliers in networked environments with

production. Section 2.6 concludes.

2.2 Theoretical Framework

2.2.1 Notation and Definitions

The cardinality of a set X is |X |. A multiset is an object similar to a set, but it

allows for multiple instances of each of its elements. Vector x is a column vector by

default. The ith element of vector x is xi or [x]i. The ijth element of matrix X is [X]ij,

the ith row of X is [X]i⇤ and the jth column of X is [X]⇤j. x0 � x for vectors x, x0 if

[x0]i � [x]i element-wise; meanwhile, x0 > x if [x0]i � [x]i element-wise with at least

one integer i for which [x0]i > [x]i. X
0 � X for matrices X,X0 if [X0]ij � [X]ij for all

pairs (i, j); meanwhile, X0 > X if [X0]ij � [X]ij element-wise with at least one pair

(i, j) for which [X0]ij > [X]ij. The identity matrix is I and the column vector whose

elements all equal 1 is 1. Depending on the particular context, 0 is either a column

vector whose elements all equal 0, or a matrix whose elements all equal 0. Z+ is the

set of all non-negative integers.

Matrix X is row-stochastic if X1 = 1 and all matrix elements of X are non-
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negative. Matrix X is column-stochastic if XT1 = 1 and all matrix elements of X are

non-negative. Matrix X is doubly stochastic if it is both row-stochastic and column-

stochastic. The Hadamard product of matrices X and Y, X � Y, is their element-wise

multiplication: [X � Y]ij = [X]ij [Y]ij. Non-negative matrix X is primitive if there

exists an integer q � 1 such that [Xq]ij > 0 for all matrix elements in Xq. Matrix X is

semi-convergent if the limit limq!• Xq exists. (l,w) is a left eigenpair of matrix X

if wTX = lwT; (l,w) is the dominant left eigenpair of X when the magnitude |l|
weakly exceeds that of all other eigenvalues of X. For permutation matrix P, PX

permutes the rows of X and XP permutes the columns of X. The spectral radius

r (X) of a matrix X is the largest absolute value among the eigenvalues of X. Real

random variable X0 ⌫ X in the usual stochastic order if Pr [X0 > t] � Pr [X > t] for

all t 2 (�•,•); random variable X0 then first-order stochastically dominates random

variable X.

Graph1 G is an ordered pair G = (V , E) consisting of a set of vertices (nodes)

V and a set of edges E . �i, j, ei,j
� 2 E is an edge between nodes i and j with

weight ei,j. If the graph is directed, the edge is oriented from node i to node j;

otherwise, the edge is not oriented. If we define a weighted adjacency matrix X

whose ijth element [X]ij = ei,j denotes the edge weight between nodes i and j, then

G (X) = (V (X) , E (X)) is the corresponding weighted graph.

2.2.2 Theoretical Preliminaries

In this work, we study three different environments featuring N networked agents:

(1) networked environments with strategic complements and strategic substitutes,

(2) networked environments with coordination and anti-coordination, and (3) net-

1We will use the terms graph and network interchangeably.
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worked environments with production. In each environment, an outside actor

prescribes a policy that exogenously delivers a positive shock of a fixed magnitude

to the actions of n  N agents. The policy targets n agents, but it does not specify

the identities of those agents. The policy is either financed internally by the other

agents in the population or it is financed externally by agents who are outside of

the system. We therefore have two classes of policies; we refer to the former class of

policies as transfers and the latter class of policies as stimulus. Given a prescribed

policy, we are interested in the resulting distributions of possible aggregate actions

and corresponding economic multipliers. We would like to understand how these

distributions and their statistical properties depend on the implemented policy and

the topology of the network.

We find that the mathematics is the same across all three environments.

Therefore, in the present section, we write out general expressions for the aggregate

action and the corresponding economic multiplier for each of our two classes of

policies. These general expressions for the aggregate action and the economic

multiplier depend on a matrix Z and parameter g1. In later sections, we identify

the specific expressions for Z and g1 for each of the three networked environments.

We substitute those quantities into the general expressions for the aggregate action

and the economic multiplier provided in Section 2 to obtain environment-specific

formulae.

In this section, we solve for all distributional features of the aggregate action

and the economic multiplier using the general expressions. Later on, we can solve

for the distributional features of the aggregate action and the economic multiplier

in specific environments by plugging in the relevant values of Z and g1. These

results that characterize the distributional features of the aggregate action and the

corresponding economic multiplier build on a theoretical framework and a core
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set of mathematics introduced and developed in Chapter 1 of this dissertation. We

adapt the theoretical framework and the core set of mathematical results for the

present paper. The present subsection develops this core set of mathematical results

as a collection of lemmata. All of the general results characterizing the distributions

of aggregate actions and economic multipliers, which build on the set of lemmata,

are then presented in the next subsection.

We have a population of N agents organized on a network G (Z) =

(V (Z) , E (Z)) with weighted adjacency matrix Z. There are no constraints on the

matrix elements of Z, other than that each element is a real number. Now, every

agent i in the population has a binary-valued attribute, bi. This binary-valued

attribute identifies which agents in the population are recipients of positive funds;

depending on the policy, these funds are either financed by transfer or stimulus.

Specifically, attribute bi = 1 if agent i is the recipient of positive funds, and otherwise

bi = 0. There are n  N agents receiving positive funds and therefore n  N agents

with the attribute’s unit value. Given n, there is a particular configuration, or

arrangement, of this binary-valued attribute among agents in the population. A

configuration is defined as follows:

Definition 2.1 A configuration b ⌘ b (N, n) of a binary-valued attribute in a population

of N agents is an allocation of this attribute so that bi 2 {0, 1} for all agents i 2 {1, . . . ,N}
and bT1 = n.

A configuration b ⌘ b (N, n) is an allocation of the attribute’s unit value to exactly n

agents in a total population of N agents. Vector b stacks each agent’s binary-valued

attribute and identifies the indices of those agents that have the attribute’s unit value.

Two configurations b,b0 are distinct when b 6= b0 because the subsets of agents with

the attribute’s unit value differ across these two configurations. Given a population
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of size N and n agents with the attribute’s unit value, there are many different

possible configurations of the attribute. The set of all possible configurations is

B (N, n), and the cardinality of this set is combinatorial: |B (N, n)| = (Nn ).

For each agent positioned on the network, we compute the local relative

frequency of the attribute’s unit value. Since the attribute’s unit value denotes the

receipt of positive funds, we are therefore essentially computing the local prevalence

of this positive shock for every agent in his or her network neighborhood. We

compute this quantity for each agent by taking a weighted sum of the values of

the binary attribute for the agent’s out-neighbors. The weights that we use in

this sum are the edge weights that link the agent to these out-neighbors. We

accordingly define bf (Z,b,N, n) = Zb (N, n) as the N ⇥ 1 population vector of local

relative frequencies of the attribute; the local relative frequency of the attribute

for each agent depends on the topology of the network, G (Z), and it depends on

which subset of n agents actually has the attribute’s unit value, b (N, n). The local

relative frequency of the attribute for agent i, bfi (Z,b,N, n) = [Z]i⇤ b (N, n), can

take values outside of the [0, 1] interval because [Z]i⇤ is not constrained to have all

non-negative elements and [Z]i⇤ 1 is not constrained to sum to 1. In Chapter 1 of this

dissertation, matrix Z ⌘ Ā is row-stochastic, so all of its elements are non-negative

and the elements in each row sum to 1. As a result, for all agents i 2 {1, . . . ,N},
[Ā]i⇤ b (N, n) 2 [0, 1], and we can exactly interpret [Ā]i⇤ b (N, n) as the local relative

frequency of the attribute for agent i. To be consistent with the nomenclature

of Chapter 1, we also refer to bfi (Z,b,N, n) = [Z]i⇤ b (N, n) as the local relative

frequency of the attribute for agent i; if we want to be more precise, we can think of

this quantity as a scaled local relative frequency of the attribute.

We are interested in the population-averaged local relative frequency of the

attribute’s unit value, bfavg (Z,b,N, n). We are essentially computing the average
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local prevalence of the positive shock given n. We calculate this quantity as follows:

bfavg (Z,b,N, n) =
1
N
1Tbf (Z,b,N, n) =

1
N
1TZb (N, n) =

⇥

d�
w (Z)

⇤T b (N, n) ,

where d�
w (Z) = 1

NZT1 is the vector of average weighted in-degrees for graph

G (Z). To determine the average local relative frequency of the attribute for a

particular configuration, we derive the vector of agent weights, d�
w (Z), from the

underlying graph G (Z). We then multiply d�
w (Z) by the configuration vector

b (N, n), and we obtain the configuration-specific average local relative frequency

of the attribute’s unit value. The higher an agent’s weight, the more that agent

contributes to the average local relative frequency of the attribute provided that he

or she has the attribute’s unit value. The sum of agents’ weights is k: 1Td�
w (Z) = k.

Without restrictions on Z, the average local relative frequency of the attribute is

not constrained to the interval [0, 1]; in Chapter 1, bfavg (Z,b,N, n) 2 [0, 1] because

Z ⌘ Ā is row-stochastic. To be consistent with the nomenclature of Chapter 1, we

refer to bfavg (Z,b,N, n) as the average local relative frequency of the attribute; if we

want to be more precise, we can think of this quantity bfavg (Z,b,N, n) as a scaled

average local relative frequency of the attribute.

Holding n fixed, that is, holding fixed the total number of agents receiving

positive funds, we can imagine that bfavg (Z,b,N, n) varies with configuration. De-

pending on which subset of agents receives the positive shock, we can have variation

in its average local prevalence. We would like to determine the distribution of

possible average local relative frequencies of the positive shock given N, n, and

Z. We therefore introduce random variable bFavg (Z,N, n). This random variable

has configuration-specific realizations bfavg (Z,b,N, n). The CDF of bFavg (Z,N, n) is

G
bFavg(Z,N,n) (t), and we are interested in the distributional features of bFavg (Z,N, n).

We assume that each configuration is equally likely, although this is an assumption
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that we can relax (see Chapter 1). By characterizing the distributional features of

bFavg (Z,N, n), we are able to later compute in closed form the distributional features

of the aggregate action and corresponding economic multiplier across all three

networked environments.

We now present a set of lemmata that characterizes the distributional features

of bFavg (Z,N, n). We begin with the first moment of the distribution:

Lemma 2.1 EbFavg (Z,N, n) = kn
N .

The average local relative frequency of the attribute can vary with configuration,

but across all possible configurations, this quantity is equal to kn
N on average. The

value of constant k depends on the topology of network G (Z).

We would also like to know how much the average local relative frequency of

the attribute can vary with configuration. By computing this second moment, we can

determine how much the aggregate action in the economy and the accompanying

economic multiplier vary with configuration for a given policy. To compute this

second moment, Var bFavg (Z,N, n), we introduce one more piece of notation. We

define random variable D�
w (Z) whose realizations are agent weights [d�

w (Z)]i.

By introducing random variable D�
w (Z), we can compactly express population

moments for the set of agent weights; for example, ED�
w (Z) = 1

N ÂN
i=1 [d

�
w (Z)]i =

k
N and VarD�

w (Z) = 1
N ÂN

i=1

⇣

[d�
w (Z)]i � k

N

⌘2
. The closed-form expression for

Var bFavg (Z,N, n) is then as follows:

Lemma 2.2 Var bFavg (Z,N, n) = n
N
�

1� n
N
� N

N�1 (NVarD�
w (Z)).

The variance of bFavg (Z,N, n) fundamentally depends on the variance of agents’

weights. The greater the heterogeneity in agents’ weights, the greater the variation

in the average local relative frequency of the attribute because this quantity then
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depends more strongly on which subset of agents actually has the attribute’s unit

value.

Lemma 2.3 shows how to compute the lower and upper bounds on the

support of bFavg (Z,N, n). Given that n agents have received a positive shock, we

compute both the lowest and the highest possible average local relative frequencies

of the attribute. We later use this result to compute the lowest and highest possible

aggregate actions and economic multipliers consistent with a particular policy.

Lemma 2.3 Construct the ordered multiset { ewi}Ni=1 from the elements of d�
w (Z) so that

ewi  ewi0 whenever i  i0. The lower and upper bounds on the support of bFavg (Z,N, n) are

respectively:

min supp bFavg (Z,N, n) =
n

Â
i=1
ewi and max supp bFavg (Z,N, n) =

N

Â
i=N�n+1

ewi.

We attain the lower bound on the support of bFavg (Z,N, n) when the n agents with

the smallest weight have the attribute’s unit value. Meanwhile, we attain the upper

bound on the support of bFavg (Z,N, n) when the n agents with the largest weight

have the attribute’s unit value.

We would moreover like to identify those network topologies and those vec-

tors of agent weights, d�
w (Z), for which bfavg (Z,b,N, n) is invariant to configuration:

Definition 2.2 bfavg (Z,b,N, n) is invariant to configuration when bfavg (Z,b,N, n) =

bfavg (Z,b0,N, n) for all configurations b (N, n) ,b0 (N, n) 2 B (N, n), and this property

holds for all feasible n.

When bfavg (Z,b,N, n) is invariant to configuration, the distribution G
bFavg(Z,N,n) (t)

is degenerate. The particular configuration of positive shocks among agents is

irrelevant; regardless of the configuration, the average local relative frequency

of the attribute is the same, which makes the distributions of aggregate output
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and economic multipliers likewise degenerate. In the next result, we identify

the necessary values for agents’ weights so that bfavg (Z,b,N, n) is invariant to

configuration:

Lemma 2.4 bfavg (Z,b,N, n) = [d�
w (Z)]T b (N, n) is invariant to configuration if and

only if [d�
w (Z)]i = k

N for all i 2 {1, . . . ,N}. When bfavg (Z,b,N, n) is invariant to

configuration, bfavg (Z,b,N, n) = kn
N .

Provided that every agent has the same weight, and in particular, the same average

weighted in-degree, bFavg (Z,N, n) = kn
N with probability 1. Any network G (Z)

structured so that each agent has the same weighted in-degree yields this null case

in which configuration is irrelevant. The behavior of the economy here only depends

on k, N, and n, and not on the underlying configuration b (N, n).

We proceed by returning to the original general setting in which the dis-

tribution G
bFavg(Z,N,n) (t) is non-degenerate. In addition to presenting closed-form

expressions for the statistical features of bFavg (Z,N, n), we are interested in charac-

terizing its CDF, G
bFavg(Z,N,n) (t). The next lemma identifies a closed-form expression

that essentially allows us to draw the CDF of bFavg (Z,N, n) for all feasible network

structures, population sizes, and number of agents being targeted by the policy. We

first introduce the function J (Z,N, n, t):

J (Z,N, n, t) = F (t)� H2 (t) f (t)C1

N

Â
i=1
bw3
i

� H3 (t) f (t)

"

C2

 

N

Â
i=1
bw4
i �

3
N

!

� 1
4N

#

� H5 (t) f (t)C3

 

N

Â
i=1
bw3
i

!2

,

where bwi =
[d�

w (Z)]i�ED�
w (Z)p

NVarD�
w (Z)

, C1 =
1� 2n

N

6( n
N (1� n

N ))
1/2 , C2 =

1�6( n
N )(1� n

N )
24( n

N )(1� n
N )

,

C3 =
(1� 2n

N )
2

72( n
N )(1� n

N )
, f (t) = F0 (t) = 1p

2p

e� t2
2 , and Hi (t) f (t) = (�1)i d i

dt i f (t). We
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then approximate CDF G
bFavg(Z,N,n)�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))1/2
(t) by the function J (Z,N, n, t):

Lemma 2.5 Provided that condition (c) holds,
�

�

�

�

�

�

G
bFavg(Z,N,n)�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))1/2
(t)� J (Z,N, n, t)

�

�

�

�

�

�

< C4 ⇥
N

Â
i=1

| bwi|5

for all t, where C4 is only a function of n
N . Condition (c) is as follows:

Condition (c) (Robinson (1978)) Given C0 > 0, there exist e

0 > 0, C > 0, and

d > 0 not depending on N such that, for any fixed t, the number of indices j, for which
�

�

bwj bx� t� 2brp
�

� > e

0, for all bx 2
✓

C0 [maxi | bwi | ]�1 , C
h

ÂN
i=1 | bwi |5

i�1
◆

and all

br = 0,±1,±2, . . . , is greater than dN, for all N.

Condition (c) requires that the multiset of agent weights, {[d�
w (Z)]i}Ni=1 not be clus-

tered around two few values. Given Lemma 2.5, we can very strongly approximate

the distribution, G
bFavg(Z,N,n) (t):

G
bFavg(Z,N,n) (t) ⇡ J

0

B

@

Z,N, n,
t� EbFavg (Z,N, n)

⇣

Var bFavg (Z,N, n)
⌘1/2

1

C

A

.

Note that

N

Â
i=1
bw3
i = N�1/2 SkewD�

w (Z) and
N

Â
i=1
bw4
i �

3
N

= N�1 ⇥ �Excess KurtosisD�
w (Z)

�

.

We can therefore re-write the approximating function J (Z,N, n, t) in terms of the

higher-order moments of D�
w (Z). The asymptotic expansion J (Z,N, n, t) is to order

1/N.

Lastly, we characterize the limiting behavior of G
bFavg(Z,N,n) (t) as N ! •. We
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define the quantity

kN
�

e

0� = 1

ÂN
i=1

⇣h

d�
N,w (Z)

i

i
� k

N

⌘2 Â
j2{1,...,N} s.t.

�

�

�[d�
N,w(Z)]j�

k
N

�

�

�

>e

0
sN

✓

h

d�
N,w (Z)

i

j
� k

N

◆2

where sN =

✓

n
N
�

1� n
N
�

ÂN
i=1

⇣h

d�
N,w (Z)

i

i
� k

N

⌘2
◆1/2

. We make the population

size, N, explicit for the N ⇥ 1 vector of agent weights (i.e., we rewrite d�
w (Z) as

d�
N,w (Z)) because we wish to characterize the distribution of bFavg (Z,N, n) as N

increases. Our central limit theorem-type result is the following:

Lemma 2.6 If limN!• kN (e0) = 0 for any e

0 > 0, then limN!• G
bFavg(Z,N,n)� kn

N
sN

(t) =

F (t) for all real t, where F (·) is the standard normal CDF.

The requirement that limN!• kN (e0) = 0 for any e

0 > 0 is a Lindeberg-type condi-

tion. When this condition holds, we informally have that limN!• G
bFavg(Z,N,n) (t) ⇡

F
✓

t� kn
N

sN

◆

. The distribution of bFavg (Z,N, n) is asymptotically normal, with a mean

of kn
N and a variance that collapses to zero as the population size increases provided

that the Lindeberg-type condition holds. Given this set of lemmata, we can charac-

terize in closed form the distributions of possible aggregate actions and economic

multipliers for any feasible network structure, population size, and policy targeting

n agents.

2.2.3 General Environment

In this subsection, we develop the general theoretical environment. Our general en-

vironment nests the three classes of networked environments that we later consider:

(1) networked environments with strategic complements and strategic substitutes,

(2) networked environments with coordination and anti-coordination, and (3) net-

worked environments with production. Now, in the general environment, we have a
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population of N agents who are organized on the network G (Z0) = (V (Z0) , E (Z0)).

G (Z0) is the naturally occurring network in the environment being studied; in the

environment with production, for example, it is the production network. Given the

theoretical environment and implemented policy, we are interested in the resulting

aggregate action and the corresponding economic multiplier. To compute these two

quantities, a transformed version of G (Z0) becomes the relevant network. We refer

to this new network as G (Z) with weighted adjacency matrix Z. For each of the

specific environments that we later study, we explicitly identify both G (Z0) and

G (Z).

In the general environment, an outside actor enacts a policy. This policy

exogenously delivers a positive shock of a fixed magnitude to a subset of n  N

agents. We introduce the N ⇥ 1 vector r to capture the policy-induced shock. If

the policy is financed by transfers, we set [r]i = e > 0 if agent i is receiving the

positive shock, and otherwise we set [r]i = � ne

N�n . Note that 1Tr = 0 when the

policy is financed by transfers. Meanwhile, if the policy is financed by stimulus, we

set [r]i = e if agent i is receiving the positive shock, and otherwise we set [r]i = 0.

How the shock exactly impacts agent decision-making behavior depends on the

specific environment. Given r, we can construct the configuration vector b (N, n):

[b (N, n)]i = 1 if [r]i = e and otherwise [b (N, n)]i = 0 with 1Tb (N, n) = n.

Given that N agents are organized on the network G (Z) and the outside actor

has enacted a policy providing a positive shock to n agents, we are interested in the

resulting aggregate action and economic multiplier. In the general environment, the

configuration-specific aggregate action, yagg (Z,b,N, n, `), takes the following form:

yagg (Z,b,N, n, `) = ynoagg + g1N
⇥

d�
w (Z)

⇤T
r; (2.1)

ynoagg is the aggregate action for all agents in the population in the absence of
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any policy, g1 is an environment-specific constant, 1Td�
w (Z) = k, and ` 2 {0, 1}

is an argument that indicates whether the enacted policy is being financed by

transfers or external stimulus. ` = 0 denotes a policy financed by transfers and

` = 1 denotes a policy financed by stimulus; the elements of vector r adjust

depending on the particular configuration and whether ` = 0 or ` = 1. We

compute the corresponding configuration-specific economic multiplier as follows:

m (Z,b,N, n, `) =
dyagg(Z,b,N,n,`)

de

. The economic multiplier captures the change in

the aggregate action given that a particular configuration of n agents is receiving e

units of a positive shock.

The aggregate action is, in essence, a weighted sum of shocks; the relevant

weights here are agents’ average weighted in-degrees, d�
w (Z), for the network G (Z).

The higher an agent’s weight, as determined by the structure of Z, the greater the

effect that the agent has on the aggregate action if he or she is the recipient of a pos-

itive shock. In general, in networked environments, the interdependencies of agents’

actions can be complicated; the network G (Z) disentangles these complexities. It

transforms the original network G (Z0) into a new structure G (Z) whose average

weighted in-degrees simply determine the effect that each agent’s action has on the

aggregate action.

We now examine how to express the aggregate action when we have a

particular configuration of positive shocks. Let’s suppose that agents 1, . . . , n are the

recipients of a positive shock. We then have bi = 1 for i 2 {1, . . . , n} and otherwise

bi = 0. If the policy is financed by transfers, the aggregate action is as follows:

yagg (Z,b,N, n, 0) = ynoagg + g1Ne

⇥�⇥

d�
w (Z)

⇤

1 + · · ·+ ⇥d�
w (Z)

⇤

n
�

� n
N � n

⇣

⇥

d�
w (Z)

⇤

n+1 + · · ·+ ⇥d�
w (Z)

⇤

N

⌘

�

.
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If the policy is instead financed by stimulus, the aggregate action is as follows:

yagg (Z,b,N, n, 1) = ynoagg + g1Ne

�⇥

d�
w (Z)

⇤

1 + · · ·+ ⇥d�
w (Z)

⇤

n
�

.

These expressions for yagg (Z,b,N, n, 0) and yagg (Z,b,N, n, 1) immediately follow

from Equation 2.1 after substituting in the appropriate vector r.

Now that we have studied the aggregate action for a particular configuration

of positive shocks, we introduce the accompanying random variable. We define

random variable Yagg (Z,N, n, 0) as the aggregate action in a setting with transfers

and random variable Yagg (Z,N, n, 1) as the aggregate action in a setting with

stimulus. The realizations of these random variables are configuration-specific

realizations of the aggregate action when a certain subset of the population receives

the positive shock. The accompanying CDFs are GYagg(Z,N,n,0) (t) and GYagg(Z,N,n,1) (t),

and in constructing these CDFs, we assume that every configuration is equally likely.

We also define the random variables for the corresponding economic multipliers.

Random variable M (Z,N, n, 0) = dYagg(Z,N,n,0)
de

is the economic multiplier in a setting

with transfers and random variable M (Z,N, n, 1) =
dYagg(Z,N,n,1)

de

is the economic

multiplier in a setting with stimulus. The accompanying CDFs are GM(Z,N,n,0) (t) and

GM(Z,N,n,1) (t); in constructing these CDFs, we assume as well that each configuration

is equally likely.

Given Equation 2.1, we can write the random variables for aggregate output

and the corresponding economic multiplier in a setting with transfers as follows:

Yagg (Z,N, n, 0) = ynoagg + g1
N2

e

N � n
⇥
✓

bFavg (Z,N, n)� kn
N

◆

and (2.2)

M (Z,N, n, 0) = g1
N2

N � n
⇥
✓

bFavg (Z,N, n)� kn
N

◆

. (2.3)

Meanwhile, the random variables for aggregate output and the corresponding

112



www.manaraa.com

economic multiplier in a setting with externally funded stimulus are as follows:

Yagg (Z,N, n, 1) = ynoagg + g1Ne ⇥ bFavg (Z,N, n) and (2.4)

M (Z,N, n, 1) = g1N ⇥ bFavg (Z,N, n) . (2.5)

Depending on the particular configuration of the positive shock among agents in the

population, we can have variation in its average local relative frequency. The higher

the average local relative frequency of the positive shock, the higher the aggregate

action and the higher the economic multiplier.

We proceed by building on the set of lemmata from the previous subsection.

Here, we present theoretical results in which we characterize the distributional

features of the aggregate action and the corresponding economic multiplier in

settings with transfers and in settings with stimulus. We first compute in closed form

the first moment for the distributions of possible aggregate actions and economic

multipliers:

Proposition 2.1 The first moments for the aggregate action and economic multiplier are:

EYagg (Z,N, n, 0) = ynoagg, EM (Z,N, n, 0) = 0,

EYagg (Z,N, n, 1) = ynoagg + g1kne, and EM (Z,N, n, 1) = g1kn.

In settings with transfers, the mean aggregate action is equal to its no-intervention

level, ynoagg, and the mean economic multiplier is equal to zero. When the outside

actor finances its positive shock to a subset of agents by requesting a transfer

of funds from the other agents in the population, the policy has no aggregate

effect on average. This result holds for every feasible agent interaction structure,

G (Z), population size, N, and number of agents being targeted for a positive

shock, n. When the policy is instead financed by stimulus, the mean value of the
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aggregate action can deviate from its no-intervention level and the corresponding

mean economic multiplier can also deviate from zero. The values of these first

moments in settings with stimulus depend both on k, which we derive from Z, and

g1 which depends on the particular networked environment. When the network

and environment are such that k = 1 and g1 = 1, then the increase in the mean

aggregate action above its no-intervention level is equal to the aggregate amount of

stimulus, ne.

The next proposition computes in closed form the second moment for the

distributions of aggregate actions and economic multipliers:

Proposition 2.2 The second moments for the aggregate action and economic multiplier are:

VarYagg (Z,N, n, 0) =
✓

g1
N2

e

N � n

◆2 n
N

⇣

1� n
N

⌘ N
N � 1

�

NVarD�
w (Z)

�

,

VarM (Z,N, n, 0) =
✓

g1
N2

N � n

◆2 n
N

⇣

1� n
N

⌘ N
N � 1

�

NVarD�
w (Z)

�

,

VarYagg (Z,N, n, 1) = (g1Ne)2
n
N

⇣

1� n
N

⌘ N
N � 1

�

NVarD�
w (Z)

�

, and

VarM (Z,N, n, 1) = (g1N)2
n
N

⇣

1� n
N

⌘ N
N � 1

�

NVarD�
w (Z)

�

.

These second moments depend on the environment-specific constant, g1, the fraction

of agents receiving a positive shock, n
N , the total population size, N, and the

distribution of agents’ weights, GD�
w (Z) (t). Each agent’s weight determines that

agent’s effect on the aggregate action if he or she is the recipient of a positive shock

or, in the setting with transfers, the recipient of a negative shock. When there is a

large amount of heterogeneity in agents’ weights, the overall effect on the aggregate

action strongly varies depending on which configuration of agents is receiving a

positive shock. Therefore, the variance of the aggregate action and the variance of

the economic multiplier directly depend in the variance of agents’ weights.

In Proposition 2.3, we compute the lowest and the highest possible aggregate
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actions and the lowest and the highest possible economic multipliers given that n

agents in a total population of N agents are receiving a positive shock:

Proposition 2.3 Construct the ordered multiset { ewi}Ni=1 from the elements of d�
w (Z) so

that ewi  ewi0 whenever i  i0. Given Equations 2.2-2.5, we compute

min suppYagg (Z,N, n, 0), min suppM (Z,N, n, 0), min suppYagg (Z,N, n, 1), and

min suppM (Z,N, n, 1) by setting bFavg (Z,N, n) = Ân
i=1 ewi, and we compute

max suppYagg (Z,N, n, 0), max suppM (Z,N, n, 0), max suppYagg (Z,N, n, 1), and

max suppM (Z,N, n, 1) by setting bFavg (Z,N, n) = ÂN
i=N�n+1 ewi.

The lower and upper bounds on the support of the aggregate action and the

economic multiplier directly depend on the topology of the network G (Z). We

compute the lower bound by supposing that the n agents with the smallest average

weighted in-degrees receive a positive shock. Meanwhile, we compute the upper

bound by supposing that the n agents with the largest average weighted in-degrees

receive a positive shock. The extent to which the lower and upper bounds on the

support of the aggregate action and the support of the economic multiplier differ

from each other depend on the extent to which the smallest and largest average

weighted in-degrees for the graph G (Z) differ from each other.

When we have heterogeneity in agents’ weights, VarD�
w (Z) is non-zero,

which makes the distributions of possible aggregate actions and economic multipli-

ers also have positive variance. We refer to these distributions of aggregate actions

and economic multipliers as being non-degenerate. Depending on the particular

configuration of positive shocks, we experience variation in both the aggregate ac-

tion and the economic multiplier. The next result focuses on the null case, in which

the distributions of aggregate actions and economic multipliers are degenerate;

regardless of the particular configuration of positive shocks among agents in the
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population, holding n fixed, both the aggregate action and the economic multiplier

remain unchanged. This result identifies the necessary condition for degeneracy

and the resulting values for the aggregate action and economic multiplier:

Proposition 2.4 yagg (Z,b,N, n, 0), m (Z,b,N, n, 0), yagg (Z,b,N, n, 1), and

m (Z,b,N, n, 1) are all invariant to configuration if and only if [d�
w (Z)]i =

k
N for all

i 2 {1, . . . ,N}. When these four quantities are invariant to configuration, Yagg (Z,N, n, 0) =

ynoagg, M (Z,N, n, 0) = 0, Yagg (Z,N, n, 1) = ynoagg + g1kne, and M (Z,N, n, 1) = g1kn,

all with probability 1.

When every agent has the same weight, that is, when [d�
w (Z)]i =

k
N for all i 2

{1, . . . ,N}, the distributions of the aggregate action and economic multiplier are

degenerate for all values n. In a setting with transfers, the aggregate action is

equal to its no-intervention level and the economic multiplier is equal to zero with

probability 1. Therefore, any policy that the outside actor implements via transfer is

ineffective; there is no possibility for adjustment to the aggregate action. However,

in a setting with stimulus, the aggregate action can deviate from its no-intervention

level and the economic multiplier can deviate from zero; the effect of the policy on

both the aggregate action and the economic multiplier in a setting with stimulus

indeed does depend on the values of k and g1, but regardless of the configuration,

holding n fixed, the effect is always the same.

We return to the original setting in which the distributions of possible aggre-

gate actions and economic multipliers are non-degenerate. Thus far, we have been

presenting results that characterize certain features of these distributions, namely,

their first and second moments and the bounds on their supports. The next result

shows us how to actually draw the CDFs for these distributions:
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Proposition 2.5 For ` 2 {0, 1}, provided that condition (c) of Lemma 2.5 holds,
�

�

�

�

�

�

GYagg(Z,N,n,`)�EYagg(Z,N,n,`)

(VarYagg(Z,N,n,`))1/2
(t)� J (Z,N, n, t)

�

�

�

�

�

�

< C4 ⇥
N

Â
i=1

| bwi|5 and

�

�

�

�

�

GM(Z,N,n,`)�EM(Z,N,n,`)
(VarM(Z,N,n,`))1/2

(t)� J (Z,N, n, t)

�

�

�

�

�

< C4 ⇥
N

Â
i=1

| bwi|5

for all t, where C4 is only a function of n
N and bwi =

[d�
w (Z)]i�ED�

w (Z)p
NVarD�

w (Z)
.

Given this result, for ` 2 {0, 1}, we can strongly approximate the CDFs for the

aggregate action and the corresponding economic multiplier as follows:

GYagg(Z,N,n,`) (t) ⇡ J

 

Z,N, n,
t� EYagg (Z,N, n, `)

�

VarYagg (Z,N, n, `)
�1/2

!

and

GM(Z,N,n,`) (t) ⇡ J

 

Z,N, n,
t� EM (Z,N, n, `)

(VarM (Z,N, n, `))1/2

!

.

We observe that these approximations depend on the function J (Z,N, n, t). The

function J (Z,N, n, t) is an asymptotic expansion whose first term is the normal

distribution and whose other terms represent deviations away from the normal

distribution. The extent to which these other terms are non-zero depends on the

extent to which the distribution of agent weights, GD�
w (Z) (t), has non-zero skewness

and/or non-zero excess kurtosis. When the distribution of agent weights has these

non-zero higher-order moments, then the CDFs GYagg(Z,N,n,`) (t) and GM(Z,N,n,`) (t),

for ` 2 {0, 1}, deviate from distributions that are normal. It is ultimately the topol-

ogy of G (Z) that shapes the lower-order and higher-order distributional features

of GYagg(Z,N,n,`) (t) and GM(Z,N,n,`) (t), for ` 2 {0, 1}. The topology of the network

can generate distributions with properties of skewness and/or heavy-tailedness

based on the statistical features of its accompanying network-derived vector of agent

weights, d�
w (Z). Given Proposition 2.5, we can draw the CDFs of aggregate actions
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and economic multipliers for any feasible network structure, G (Z), population size,

N, and number of agents receiving a positive shock, n. For any policy, we can draw,

via closed-form expressions, the resulting distribution of possible aggregate actions

and the resulting distribution of possible economic multipliers.

We proceed to characterize limiting distributions for the aggregate action

and economic multiplier as N ! •:

Proposition 2.6 If limN!• kN (e0) = 0 for any e

0 > 0, then

limN!• GYagg(Z,N,n,`)�EYagg(Z,N,n,`)

(VarYagg(Z,N,n,`))1/2
(t) = F (t) and limN!• GM(Z,N,n,`)�EM(Z,N,n,`)

(VarM(Z,N,n,`))1/2
(t) = F (t)

for ` 2 {0, 1} and for all real t.

When the Lindeberg-type condition is satisfied, as N ! •, the aggregate action and

economic multiplier become normally distributed. Informally,

limN!• GYagg(Z,N,n,`) (t) ⇡ F
✓

t�EYagg(Z,N,n,`)

(VarYagg(Z,N,n,`))
1/2

◆

, and limN!• GM(Z,N,n,`) (t) ⇡

F
✓

t�EM(Z,N,n,`)
(VarM(Z,N,n,`))1/2

◆

. Even though we are studying the limiting case in which

N ! •, in this particular setting, VarYagg (Z,N, n, `) and VarM (Z,N, n, `) for

` 2 {0, 1} do not generally tend to zero. To see this, let us examine VarYagg (Z,N, n, 0).

From Proposition 2.2,

VarYagg (Z,N, n, 0) =
✓

g1
N

N � n
Ne

◆2 n
N

⇣

1� n
N

⌘ N
N � 1

N

Â
i=1

✓

⇥

d�
w (Z)

⇤

i �
k
N

◆2
.

Let us hold n
N fixed as N grows. Then:

VarYagg (Z,N, n, 0) µ N2

"

N

Â
i=1

✓

⇥

d�
w (Z)

⇤

i �
k
N

◆2
#

,

so the behavior of VarYagg (Z,N, n, 0) depends on how d�
w (Z) and k

N evolve as

the population grows; we can imagine that there are many scenarios in which

VarYagg (Z,N, n, 0) either does not tend toward zero or tends to zero very slowly.

As a result, the particular configuration of positive shocks remains relevant for all
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population sizes; even for large N, there will still be variation in both the aggregate

action and the economic multiplier across configurations.

Care must be taken in determining whether the Lindeberg-type condition

actually gets satisfied, that is, limN!• kN (e0) = 0 for any e

0 > 0. When Z is row-

stochastic, the Lindeberg-type condition is generally satisfied. We have k = 1 for

all population sizes N; moreover, agents’ weights, [d�
w (Z)]i, are non-negative and

constrained to sum to 1, so as N increases, agents’ weights generally tend toward

zero, and they become increasingly closer to the average agent weight. However,

there exist many types of matrices Z for which the Lindeberg-type condition does

not get satisfied. We can imagine that there exist classes of matrices Z for which k

changes as N grows; for example, there exist growing matrices Z for which k
N = 1

for all N. Then, in such settings, agents’ weights, [d�
w (Z)]i, need not move closer to

the average agent weight, k
N , as N ! •.

In Proposition 2.7, we compute in closed form the probability that a policy

targeting n agents leads to an aggregate action below its no-intervention level and a

negative multiplier:

Proposition 2.7 The probability of an aggregate action below its no-intervention level and

a negative multiplier are as follows:

Pr
h

Yagg (Z,N, n, 0) < ynoagg
i

= Pr [M (Z,N, n, 0) < 0] = Pr


bFavg (Z,N, n) <
kn
N

�

,

and

Pr
h

Yagg (Z,N, n, 1) < ynoagg
i

= Pr [M (Z,N, n, 1) < 0] = Pr
h

bFavg (Z,N, n) < 0
i

.

Provided that condition (c) of Lemma 2.5 holds, Pr
h

bFavg (Z,N, n) < kn
N

i

⇡ J (Z,N, n, 0)

and Pr
h

bFavg (Z,N, n) < 0
i

⇡ J
✓

Z,N, n,� EbFavg(Z,N,n)

(Var bFavg(Z,N,n))
1/2

◆

, with
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bwi =
[d�

w (Z)]i�ED�
w (Z)p

NVarD�
w (Z)

.

Provided that condition (c) of Lemma 2.5 holds, we can compute in closed form

the probability that a policy targeting n agents lowers the aggregate action and

generates a negative economic multiplier. We can compute this probability in both

settings with transfers and settings with stimulus. We can moreover compute this

probability for any feasible network structure, G (Z), population size, N, and number

of agents, n, being targeted by the outside actor’s policy. When the outside actor’s

policy is financed by transfers and the network structure, G (Z), is such that the

distribution of agent weights, GD�
w (Z) (t), has zero skewness and zero excess kurtosis,

J (Z,N, n, 0) = 0.50; the probability that the policy targeting n agents leads to a

negative multiplier and a reduction in the aggregate action below its no-intervention

level is equal to 50 percent. The topological features of the network G (Z) shape the

distributional features of D�
w (Z) and thereby determine the probability that a policy

targeting n agents generates a reduction in the aggregate action and a negative

economic multiplier.

Negative multipliers emerge in settings with transfers when agent weights

are not all equal:

Proposition 2.8 For every n 2 {1, . . . ,N � 1}, provided that d�
w (Z) 6= k

N1,

Pr
h

Yagg (Z,N, n, 0) < ynoagg
i

= Pr [M (Z,N, n, 0) < 0] > 0.

Given any policy that targets n agents and is financed by transfers, there is a positive

probability of a negative multiplier and a positive probability that the aggregate

action can be less than its no-intervention level. Practically every network structure

G (Z) generates negative economic multipliers in settings with transfers. The only

class of networks for which there is zero probability of a negative multiplier is the

one for which 1TZ = k1T. For this particular class, the configuration of positive
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shocks is irrelevant, so M (Z,N, n, 0) = 0 with probability 1. Once configuration

becomes relevant, negative economic multipliers naturally emerge.

Now that we have finished characterizing policy-induced distributions of

possible aggregate actions and economic multipliers in a general networked envi-

ronment, we transition towards studying policy-induced distributions of aggregate

actions and economic multipliers in three specific networked environments.

2.3 Networked Environments with Strategic Comple-

ments and Strategic Substitutes

We transition to our first setting of network-based interaction among agents. The

environment that we study in this section is one of strategic complementarities and

strategic substitutabilities. In this environment, the action of an agent can potentially

tilt away from its autarkic level depending on the network of linkages and the extent

to which other agents’ actions act as complements or substitutes. We are able to

characterize the distribution of possible aggregate actions and the distribution of

possible multipliers in such a setting when a random subset of networked agents

in the economy receives either a transfer of wealth or stimulus. Our model builds

on work by Ballester, Calvó-Armengol, and Zenou (2006), which studies network

games with linear-quadratic payoffs.

Let’s consider an economy with a population of N agents. Each agent

i 2 {1, . . . ,N} chooses an action yi � 0 and receives a payoff

ui (y1, . . . , yN) = aiyi +
1
2

sy2i +
N

Â
j=1
j 6=i

sijyiyj,

with ai > 0. Agents’ payoffs are strictly concave in their own individual actions:
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∂

2ui
∂y2i

= s < 0. Bilateral influences on agent i’s payoff are the quantities: ∂

2ui
∂yi∂yj

= sij.

When sij > 0, agent j’s action is a strategic complement to agent i’s action. When

sij < 0, agent j’s action is a strategic substitute to agent i’s action. In the absence of

bilateral influences, agent i’s autarkic action is y⇤i = � ai
s

. Actions that are strategic

complements push agent i’s action above its autarkic level, while actions that are

strategic substitutes push agent i’s action below its autarkic level. We capture the

interdependencies of agents’ behavior with the matrix Z0 = S whose diagonal

elements are s and off-diagonal elements are sij. S is the weighted adjacency matrix

that corresponds to network G (S). Parameter ai, the marginal benefit accrued

from an additional unit of action by agent i, can vary across individuals. Its value

depends on each agent’s wealth, that is, ai = ywi for y > 0 and wealth wi. Greater

wealth increases agent i’s action. The optimization problem for each agent i is

therefore:

max
yi

ywiyi +
1
2

sy2i +
N

Â
j=1
j 6=i

sijyiyj.

We map this theoretical environment to two different real-world settings.

The first setting concerns a population of students and the amount of effort that

they exert towards their education. This amount of effort depends on the behavior

of their peers; see, for example, Calvó-Armengol, Patacchini, and Zenou (2009),

Sacerdote (2011), and Epple and Romano (2011) for research on peer effects in

education. The social network G (S) captures these peer effects. In this model, the

amount of effort also depends on the wealth of the student’s family. Björklund and

Salvanes (2011) documents the positive relationship between family income and

educational attainment; we might imagine that student effort strongly correlates

with educational attainment. Family wealth raises the marginal utility of a student’s

effort through a variety of channels: for example, the family can afford to live in
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a neighborhood with higher-quality public schools that better motivate students

to perform; the family can pay for enrichment activities that make learning more

exciting and therefore more rewarding for the student; and the family can pay for

tutoring, which increases the return that the student receives on every unit of effort.

Here, the aggregate action is the aggregate effort of all students; greater aggregate

effort is positively correlated with greater aggregate earning potential.

The second setting concerns the R&D divisions of firms and the amount of

effort that they each allocate towards innovation. Among different R&D divisions,

there is an underlying network of collaborators and competitors (Goyal and Moraga-

Gonzalez (2001), König, Liu, and Zenou (2018)). The network G (S) captures these

relationships as well as the extent to which firms’ R&D efforts acts as strategic

complements or strategic substitutes to each other. Within formal R&D alliances,

knowledge spillovers can boost the productivity for the R&D divisions of linked

firms and thereby serve as a strategic complement; alternatively, they can reduce

the incentives for a linked firm to engage in R&D activity (see D’Aspremont and

Jacquemin (1988) and Suzumura (1992)). Meanwhile, R&D activity by competitors

in a firm’s product space can spark either positive or negative adjustments to the

amount of effort that a firm exerts for its own R&D. Effort towards R&D is costly.

The marginal benefit of effort for the R&D division is the reward of innovation. For

every additional unit of effort, the reward of innovation depends on the likelihood

of innovation. We can imagine that this likelihood of innovation scales with the

firm’s wealth. The greater the firm’s wealth, the more productive and innovative are

the employees that the firm hires, and therefore the more likely innovation will take

place. Here, the aggregate action is aggregate R&D effort across all firms; greater

effort generally leads to greater innovation.

We now return to the original setup of our model and define the unique, inte-
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rior Nash equilibrium in this setting. Consistent with Ballester, Calvó-Armengol, and

Zenou (2006), we introduce some additional notation. We set s = min
�

sij|i 6= j
 

,

s = max
�

sij|i 6= j
 

, and g = �min {s, 0} � 0. We assume that s < min {s, 0}.
We set l = s + g, which we take to be positive. We then define the zero-diagonal

non-negative square matrix G whose off-diagonal elements are [G]ij =
sij+g

l

2 [0, 1].

Constant b = �g � s > 0 and r (G) is the spectral radius of G. Our unique

equilibrium is as follows:

Proposition 2.9 Provided that b > lr (G), the unique interior Nash equilibrium in pure

strategies is y⇤ = �yS�1w.

Vector w denotes agents’ wealth prior to any transfers or receipt of stimulus.

Given agents’ equilibrium behavior, we can compute the aggregate action, ynoagg, for

all agents in the population in the absence of any transfers or stimulus:

ynoagg = 1Ty⇤ = yN
h

d�
w

⇣

�S�1
⌘iT

w,

where d�
w
��S�1� = 1

N
��S�1�T 1. The aggregate action crucially depends on the

structure of agents’ interaction network. As the topology of agents’ interaction

network changes, agents’ individual actions as well as the aggregate action adjust.

We essentially have two relevant networks: (1) the original agent interaction struc-

ture, G (Z0) = G (S), that captures strategic complementarities and substitutabilities

between agents, and (2) the network, G (Z) = G ��S�1�, that determines each

agent’s effective weight in the population. The vector that captures agents’ weights

is the vector of average weighted in-degrees for the graph G ��S�1�: d�
w
��S�1�.

Agents’ weights sum to k: 1T
⇥

d�
w
��S�1�⇤ = k.

Agents’ weights, d�
w
��S�1�, determine how much of an effect targeted

stimulus or a targeted transfer has on the aggregate action. We have this complex
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web of interactions. A positive shock to an agent’s wealth increases that agent’s

autarkic action. However, actions are not decided by agents in isolation. A shock

to an agent’s wealth adjusts the actions of his or her neighbors, which then adjusts

the actions of the neighbors of that agent’s original set of neighbors, etc. The vector

of agent weights, d�
w
��S�1�, condenses all of these effects; the larger an agent’s

weight, the greater the effect on the aggregate action following a shock to that

agent’s wealth.

We can examine what happens to the aggregate action for a particular

configuration of transfers or stimulus, holding fixed agents’ interaction structure.

The configuration vector b (N, n) 2 B (N, n) identifies which subset of n  N agents

is receiving a positive adjustment to wealth. Element bi = 1 if agent i is receiving a

positive transfer or stimulus, and otherwise bi = 0. Agents’ wealth following either

a transfer or stimulus changes from w to w + r. In a setting with transfers, [r]i = e

if bi = 1 and [r]i = � ne

N�n if bi = 0. In a setting with stimulus, [r]i = e if bi = 1 and

[r]i = 0 if bi = 0.

We can characterize the aggregate action and the economic multiplier on

the aggregate action when agents 1, . . . , n receive a positive transfer of wealth and

agents n+ 1, . . . ,N receive a negative transfer of wealth so that there is a zero net

transfer. In this setting, bi = 1 for i 2 {1, . . . , n}:

yagg
⇣

�S�1,b,N, n, 0
⌘

= ynoagg + yNe

h⇣h

d�
w

⇣

�S�1
⌘i

1
+ · · ·+

h

d�
w

⇣

�S�1
⌘i

n

⌘

� n
N � n

✓

h

d�
w

⇣

�S�1
⌘i

n+1
+ · · ·+

h

d�
w

⇣

�S�1
⌘i

N

◆�

The fifth argument of yagg
��S�1,b,N, n, 0

�

, that is, the 0, denotes the setting

in which there is a transfer of wealth. The multiplier is m
��S�1,b,N, n, 0

�

=
dyagg(�S�1,b,N,n,0)

de

. We can also characterize the aggregate action and the economic

multiplier on the aggregate action when agents 1, . . . , n receive positive stimulus
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while agents n+ 1, . . . ,N receive zero adjustment to wealth. In this setting with

stimulus, bi = 1 for i 2 {1, . . . , n}:

yagg
⇣

�S�1,b,N, n, 1
⌘

= ynoagg + yNe

⇣h

d�
w

⇣

�S�1
⌘i

1
+ · · ·+

h

d�
w

⇣

�S�1
⌘i

n

⌘

.

The fifth argument of yagg
��S�1,b,N, n, 1

�

, that is, the 1, denotes the setting

in which stimulus is externally funded. The multiplier is m
��S�1,b,N, n, 1

�

=
dyagg(�S�1,b,N,n,1)

de

.

We have computed the aggregate action and the corresponding economic

multiplier given a particular configuration of transfers and a particular configuration

of stimulus. We are interested in all possible aggregate actions and all possible

economic multipliers when n agents each receive e > 0 units of additional wealth.

We therefore introduce random variables that allow us to characterize the distribu-

tion of possible aggregate actions as well as the distribution of possible economic

multipliers given n:

Proposition 2.10 In a setting with transfers, the aggregate action and the corresponding

economic multiplier are:

Yagg

⇣

�S�1,N, n, 0
⌘

= ynoagg +
yN2

e

N � n



bFavg
⇣

�S�1,N, n
⌘

� kn
N

�

and

M
⇣

�S�1,N, n, 0
⌘

=
yN2

N � n



bFavg
⇣

�S�1,N, n
⌘

� kn
N

�

.

In a setting with stimulus, the aggregate action and the corresponding economic multiplier

are:

Yagg

⇣

�S�1,N, n, 1
⌘

= ynoagg + yNe

bFavg
⇣

�S�1,N, n
⌘

and

M
⇣

�S�1,N, n, 1
⌘

= yNbFavg
⇣

�S�1,N, n
⌘

.

The expressions for Yagg
��S�1,N, n, 0

�

, M
��S�1,N, n, 0

�

, Yagg
��S�1,N, n, 1

�

,

126



www.manaraa.com

and M
��S�1,N, n, 1

�

in Proposition 2.10 directly map to Equations 2.2-2.5 in

Section 2.2, where we set Z = �S�1 and g1 = y.

Therefore, all of the results from Section 2.2 that characterize the distributions

of aggregate actions and economic multipliers map to the present setting. For

example, we can analytically compute the moments of these distributions. Given the

topology of agents’ interaction network, we can identify the lowest possible economic

multiplier and the highest possible economic multiplier on the aggregate action that

is consistent with a particular fraction of the population receiving positive wealth

transfers or externally financed stimulus. Moreover, we can analytically determine

the probability that a wealth transfer leads to a negative economic multiplier and the

probability that externally financed stimulus leads to a negative economic multiplier;

when the multiplier is negative, we have a reduction in the aggregate action below

the level ynoagg.

There do indeed exist interaction structures S for which the multiplier on

agents’ aggregate action is negative, even when every agent receives a non-negative

shock to wealth. In such settings, negative multipliers emerge from the strategic

substitutability of agents’ actions. In general, we need there to be some level of

strategic substitutability to generate a negative economic multiplier:

Proposition 2.11 In environments without strategic substitutes, provided that �s >

r (S � sI), Pr
h

Yagg
��S�1,N, n, 1

� � ynoagg
i

= 1 and Pr
⇥

M
��S�1,N, n, 1

� � 0
⇤

= 1.

The requirement that �s > r (S � sI) ensures the non-singularity of S and hence

its invertibility: S�1 exists and we can construct d�
w
��S�1�. As demonstrated in

the proof for Proposition 2.11, provided that �s > r (S � sI), every agent has a

non-negative weight in environments without strategic substitutes: d�
w
��S�1� � 0.

From the expressions for Yagg
��S�1,N, n, 1

�

and M
��S�1,N, n, 1

�

in Proposi-

tion 2.10, we know that any configuration of stimulus leads to a weak increase in the
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aggregate action and a non-negative economic multiplier whenever d�
w
��S�1� � 0.

Therefore, in environments without strategic substitutes, we can never have a reduc-

tion in the aggregate action following stimulus. However, in settings with transfers,

there is generally still a positive probability of negative economic multipliers, even in

environments with only strategic complements. Negative multipliers emerge in such

settings due to the mixture of positive and negative shocks to wealth that agents

are experiencing and the heterogeneity in agents’ effective weights, as captured by

d�
w
��S�1�.

We would like to characterize both the aggregate action and the correspond-

ing economic multiplier in two different null settings. For the first null setting, there

is no underlying network:

Proposition 2.12 In the absence of any network-based interaction, that is, S = sI,

Yagg

⇣

�S�1,N, n, 0
⌘

= ynoagg and M
⇣

�S�1,N, n, 0
⌘

= 0

with probability 1, and

Yagg

⇣

�S�1,N, n, 1
⌘

= ynoagg �
yen

s

and M
⇣

�S�1,N, n, 1
⌘

= �yn
s

with probability 1.

When agents’ actions no longer serve as strategic complements or strategic substi-

tutes for each other, S = sI and each agent chooses an autarkic action. Transfers of

wealth across agents have no effect on the aggregate action; the economic multiplier

is zero with probability 1. Externally funded stimulus does lead to an increase

in the aggregate action; note that �yn
s

> 0 because s < 0. The more agents that

receive e > 0 units of stimulus, the higher the aggregate action. The existence of a

non-trivial network structure causes the aggregate action and the corresponding

economic multiplier to deviate in either direction away from these autarkic values.
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For the second null setting, the aggregate action is invariant to the particular

configuration of transfers or stimulus. We identify the necessary restrictions on S

that make the aggregate action invariant to configuration, and we then solve for the

resulting values of the aggregate action and the corresponding economic multiplier:

Proposition 2.13 If 1TS = d1T for some d 2 R, both the aggregate action and the

economic multiplier are invariant to configuration:

Yagg

⇣

�S�1,N, n, 0
⌘

= ynoagg and M
⇣

�S�1,N, n, 0
⌘

= 0

with probability 1, and

Yagg

⇣

�S�1,N, n, 1
⌘

= ynoagg �
yen

d

and M
⇣

�S�1,N, n, 1
⌘

= �yn
d

with probability 1.

Proposition 2.13 nests the setting of Proposition 2.12 if we set d = s. When

1TS = d1T, it turns out that d�
w
��S�1� = � 1

Nd

1, and every agent has the same

weight. As a result, regardless of which subset of agents receives a positive monetary

transfer or stimulus, the aggregate action remains the same. The distribution of

aggregate actions and the distribution of economic multipliers are both degenerate.

Agents’ interaction structure needs to deviate from this null setting in order to obtain

non-degenerate distributions. For null interaction structures, M
��S�1,N, n, 0

�

= 0,

so any deviation from this class of network topologies leads to the emergence of

negative economic multipliers in a setting with transfers.

For the remainder of this section, we provide a set of results that allows us

to rank networks. A higher-ranked network generates distributions of aggregate

actions and/or distributions of multipliers that first-order stochastically dominate

those generated by a lower-ranked network. For every possible configuration of
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transfers or stimulus, we find that the higher-ranked network generates a higher

level of aggregate actions and/or a larger economic multiplier than a lower-ranked

network. Transfers and stimulus are therefore relatively more effective for the

higher-ranked network. Our first result focuses on aggregate actions. It ranks

networks according to their corresponding distributions of aggregate actions:

Proposition 2.14 Provided that b > lr (G), b

0 > l

0r (G0), and g

0 = 0, when S0 >

S, Yagg

⇣

� (S0)�1 ,N, n, 0
⌘

⌫ Yagg
��S�1,N, n, 0

�

and Yagg

⇣

� (S0)�1 ,N, n, 1
⌘

⌫
Yagg

��S�1,N, n, 1
�

for all n 2 {1, . . . ,N � 1}.

Proposition 2.14 requires that g

0 = 0, which means that there can be no strategic

substitutes in the S0 environment. The S environment can admit both strategic

complements and strategic substitutes. In general, when S0 > S and g

0 = 0,

the distribution of possible aggregate actions in the S0 environment first-order

stochastically dominates the distribution of possible aggregate actions in the S

environment. This result separately holds in settings with transfers and in settings

with stimulus. To prove this result, we demonstrate that the aggregate action in the

S0 environment exceeds the aggregate action in the S environment for any wealth

vector w + r; this wealth vector can represent the wealth of agents in settings with

transfers and it can represent the wealth of agents in settings with stimulus.

Our second result focuses on economic multipliers. In settings with transfers,

we are unable to rank networks so that the distribution of multipliers for the higher-

ranked network first-order stochastically dominates the distribution of multipliers

for the lower-ranked network. This is because EM
��S�1,N, n, 0

�

= 0; regardless

of the underlying network the mean multiplier is always the same. However, in

settings with stimulus, we can rank networks according to their corresponding

distributions of economic multipliers:
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Proposition 2.15 Provided that b > lr (G), b

0 > l

0r (G0), and g

0 = 0,

M
⇣

� (S0)�1 ,N, n, 1
⌘

⌫ M
��S�1,N, n, 1

�

for all n 2 {1, . . . ,N} when S0 > S for

symmetric S,S0.

The S0 environment only admits strategic complements, while the S environment

can admit both strategic complements and strategic substitutes. Under these assump-

tions, d�
w

⇣

� (S0)�1
⌘

> d�
w
��S�1�, which makes the distribution of multipliers in

the S0 environment first-order stochastically dominate the distribution of multipliers

in the S environment. Given that n agents each receive e > 0 units of stimulus,

the effect on the aggregate action is relatively more positive for the higher-ranked

network.

2.4 Networked Environments with Coordination and

Anti-Coordination

We proceed to our second environment with network-based interaction. The envi-

ronment that we focus on in this section is a dynamic one in which agents engage

in a mixture of coordinating and anti-coordinating behavior with other agents in

the population. We are interested in the aggregate action for the population and its

dynamic evolution.

We have a population of N agents. Each agent chooses an action that

somehow depends on other agents’ past behaviors. In choosing this action, each

agent essentially segments the population into two groups: (1) a group with whom

the agent seeks to choose a coordinating action and (2) a group with whom the

agent seeks to choose an anti-coordinating action. Each agent moreover decides

how much weight to accord to every other agent in the population. The N ⇥ N
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matrix T captures each agent’s desire for coordination or anti-coordination; it is a

matrix of linkage types. Similar to Eger (2016a), there are two types of linkages:

[T]ij 2 {F ,D} 8i, j 2 {1, . . . ,N}. F : R ! R is the follow linkage, while D : R ! R

is the deviation linkage. Given the past action of an agent j, function F or D
transforms that past action into the present desired responding action for agent i.

When [T]ij = F , agent i seeks to follow the past action of agent j, so we have

myopic coordination, while when [T]ij = D, agent i seeks to deviate from the

past action of agent j, so we have myopic anti-coordination. Later on, we will be

introducing a matrix O, with [O]ij = 1 if [T]ij = F and [O]ij = �1 if [T]ij = D.

Meanwhile, the N ⇥ N row-stochastic matrix Ā captures the weight that agents

assign to other agents. The ijth element of Ā represents the non-negative weight that

agent i allocates to agent j. For every agent i 2 {1, . . . ,N}, the sum of the weights

that each agent i accords to every other agent j sums to 1, that is, [Ā]i⇤ 1 = 1, and

unless otherwise specified, [Ā]ii = 0. In our environment with coordinating and

anti-coordinating behavior, agents are therefore organized on the network G (Ā �O)

with corresponding weighted adjacency matrix Ā �O.

Every period q, agent i chooses an action, yi,q, that maximizes his period-q

utility:

max
yi,q

ui,q = max
yi,q

�
N

Â
j=1

[Ā]ij

⇣

yi,q � [T]ij
�

yj,q�1
�

⌘2
.

We define F : R ! R to be an identity function; F �yj,q�1
�

= yj,q�1, so when

[T]ij = F , agent i seeks to choose an action that follows agent j’s past action. We

define D : R ! R as D �yj,q�1
�

= y� �yj,q�1 � y
�

. When [T]ij = D, agent i seeks to

choose an action that deviates from the past action of agent j. In particular, agent i

wishes to choose an action that deviates in a direction opposite to the previous

action of agent j; for example, if the past action of agent j is less than a benchmark
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action y, then agent i seeks to choose an action that is greater than y, and vice versa.

We assume that desired deviating behavior takes the same form across all agents.

In this setting, coordination and anti-coordination occur on past actions, so agents’

behavior is myopic.

There are different ways that we can think about this theoretical environment

and how it maps to realistic settings. Here, I focus on one particular mapping. We

can imagine that there is a population of N agents who choose an action every

period. The magnitude of the action that each agent chooses depends on the prior

actions of other agents. In particular, each agent has a set of role models and anti-role

models. Matrix element [O]ij = 1 if agent j is a role model for agent i, and matrix

element [O]ij = �1 if agent j is instead an anti-role model for agent i. Matrix Ā then

captures the weight that each agent accords to his or her role models and anti-role

models. In a setting with role models and anti-role models, agents respectively

engage in myopic coordination and anti-coordination. In general, agents do not

communicate with their role models and anti-role models. Rather, they observe the

past actions of these agents, and they then seek to choose an action that imitates the

past actions of their role models and deviates from the past actions of their anti-role

models. A setting with role models and anti-role models is therefore a natural

setting for myopic coordination and anti-coordination. Now, there is a wide range

of possible actions that these agents can take. Let’s assume that agents are engaging

in prosocial behavior, such as volunteering or providing a public good. These agents

are selecting the amount of time that they engage in this activity, with the amount

of time dependent on the past actions of other agents. The outside observer to this

system is interested in the aggregate action, which is the total amount of time spent

on the activity.

We next return to our model and solve the optimization problem for each
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agent in this environment, that is, the optimal choice of a period-specific action:

Proposition 2.16 For each agent i 2 {1, . . . ,N}, y⇤i,q = ÂN
j=1 [Ā]ij [T]ij

�

yj,q�1
�

, and

therefore y⇤q = (Ā � T)q y0.

Depending on the structure of [T]i⇤, agent i engages in a mixture of coordinating

and anti-coordinating behavior. Agent i chooses an action that is a weighted sum

of other agents’ past actions, for those agents that agent i seeks to follow, and a

weighted sum of desired deviating actions, for those agents from whom agent i

seeks to deviate. Agents coordinate and anti-coordinate on past actions. They have

myopic best-response functions.

We assume that all agents prior to time period zero choose action y. This

action is an optimal action; given that every agent chooses y in period q� 1, every

agent will continue to choose y in period q:

y⇤i,q =
N

Â
j=1

[Ā]ij [T]ij
�

yj,q�1
�

y⇤i,q = Â
j2{1,...,N}
s.t. [T]ij=F

[Ā]ij y+ Â
j2{1,...,N}
s.t. [T]ij=D

[Ā]ij (2y� y) = y.

When time period 0 arrives, an outside entity adjusts agents’ actions: y⇤0 = y1+ r;

the r vector captures that adjustment. In settings with transfers, the outside entity

increases the actions of n agents by e > 0 units, and decreases the actions of the

remaining N � n agents by ne

N�n units. Therefore, if the ith agent receives a positive

transfer, [r]i = e, while if the ith agent receives a negative transfer, [r]i = � ne

N�n .

In settings with stimulus, the outside entity only increases the actions of n agents

by e > 0 units; it does not adjust the period-0 actions of the remaining N � n

agents. Therefore, if the ith agent receives positive stimulus, [r]i = e, while if the

ith agent does not receive positive stimulus, then [r]i = 0. Configuration vector
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b (N, n) 2 B (N, n) determines which agents receive that positive period-0 shock in

both settings with transfers and settings with stimulus. The next result allows us to

analytically trace the population vector of optimal agent actions for all periods q

given the period-0 shock r:

Proposition 2.17 With y⇤q = y1 for q < 0, the population vector of agent actions is

y⇤q = y1+ (Ā �O)q r for all q 2 Z+.

We can now compute the aggregate action in period q:

yagg,q
�

(Ā �O)q ,b,N, n, `
�

= 1Ty⇤q = ynoagg + N
⇥

d�
w
�

(Ā �O)q
�⇤T

r

for ` 2 {0, 1}.2 Quantity ynoagg = Ny is the aggregate action absent transfers or

stimulus, that is, when r = 0. d�
w
�

(Ā �O)q
�

is the vector of average weighted

in-degrees for graph G �(Ā �O)q
�

. We set d�
w
�

(Ā �O)q
�

= 1
N
⇥

(Ā �O)q
⇤T 1. The

sum of agents’ weights in period q is kq:
⇥

d�
w
�

(Ā �O)q
�⇤T 1 = kq.

In this particular environment, the aggregate action depends on the struc-

ture of agents’ interaction network. We essentially have two relevant networks:

(1) the original agent interaction structure, G (Z0) = G (Ā �O), that captures

agents’ myopic coordinating and anti-coordinating behavior, and (2) the network,

G (Z) = G �(Ā �O)q
�

, that determines each agent’s effective weight in the pop-

ulation. Each agent’s weight identifies how much of an effect targeted stimulus

or a targeted transfer towards that particular agent has on the aggregate action.

We have this complicated mixture of coordinating and anti-coordinating behavior

among agents that increases in complexity as time evolves. The period-specific

vector of agent weights, d�
w
�

(Ā �O)q
�

, summarizes the net amount of coordination

2The notation in this section deviates slightly from the notation introduced in Chapter 1. To
be consistent with the other sections in the present chapter, we use d�

w
�

(Ā �O)q
�

instead of
d� (q)
w (Ā �O), and later on, we use bFavg

�

(Ā �O)q ,N, n
�

instead of bF(q)avg (Ā �O,N, n).
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or anti-coordination that the entire population of agents undertakes given the action

of every agent.

For a particular configuration of transfers or stimulus, we can compute the

aggregate action, the corresponding dynamic multiplier (i.e., the period-specific

economic multiplier), and the impulse response. First, let’s suppose that agents

1, . . . , n receive a positive transfer. The aggregate action in period q is then:

yagg,q
�

(Ā �O)q ,b,N, n, 0
�

=

ynoagg + Ne

�⇥

d�
w
�

(Ā �O)q
�⇤

1 + · · ·+ ⇥d�
w
�

(Ā �O)q
�⇤

n
�

� N
ne

N � n

⇣

⇥

d�
w
�

(Ā �O)q
�⇤

n+1 + · · ·+ ⇥d�
w
�

(Ā �O)q
�⇤

N

⌘

,

The period-specific dynamic multiplier is

mq
�

(Ā �O)q ,b,N, n, 0
�

=
dyagg,q

�

(Ā �O)q ,b,N, n, 0
�

de

,

and the impulse response function is

ir fq
�

(Ā �O)q ,b,N, n, 0
�

= yagg,q
�

(Ā �O)q ,b,N, n, 0
�� ynoagg.

Next, let’s suppose that agents 1, . . . , n instead receive positive stimulus. The

aggregate action in period q is then:

yagg,q
�

(Ā �O)q ,b,N, n, 1
�

= ynoagg + Ne

�⇥

d�
w
�

(Ā �O)q
�⇤

1 + · · ·
+
⇥

d�
w
�

(Ā �O)q
�⇤

n
�

.

The period-specific dynamic multiplier is

mq
�

(Ā �O)q ,b,N, n, 1
�

=
dyagg,q

�

(Ā �O)q ,b,N, n, 1
�

de

,
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and the impulse response function is

ir fq
�

(Ā �O)q ,b,N, n, 1
�

= yagg,q
�

(Ā �O)q ,b,N, n, 1
�� ynoagg.

Depending on which subset of agents receives a positive transfer or stimulus,

we can have wide variation in the aggregate action, the economic multiplier, and the

impulse response for each period. In the next proposition, we define the random

variables that allow us to construct these distributions of possible values for the

aggregate action, the economic multiplier, and the impulse response for every

period q:

Proposition 2.18 In a setting with transfers, the aggregate action, the dynamic multiplier,

and the impulse response are:

Yagg,q
�

(Ā �O)q ,N, n, 0
�

= ynoagg +
N2

e

N � n

✓

bFavg
�

(Ā �O)q ,N, n
�� kqn

N

◆

,

Mq
�

(Ā �O)q ,N, n, 0
�

=
N2

N � n

✓

bFavg
�

(Ā �O)q ,N, n
�� kqn

N

◆

, and

IRFq
�

(Ā �O)q ,N, n, 0
�

=
N2

e

N � n

✓

bFavg
�

(Ā �O)q ,N, n
�� kqn

N

◆

.

In a setting with stimulus, the aggregate action, the dynamic multiplier, and the impulse

response are:

Yagg,q
�

(Ā �O)q ,N, n, 1
�

= ynsagg + Ne

bFavg
�

(Ā �O)q ,N, n
�

,

Mq
�

(Ā �O)q ,N, n, 1
�

= NbFavg
�

(Ā �O)q ,N, n
�

, and

IRFq
�

(Ā �O)q ,N, n, 1
�

= Ne

bFavg
�

(Ā �O)q ,N, n
�

.

The random variables for the impulse response function, IRFq
�

(Ā �O)q ,N, n, 0
�

and IRFq
�

(Ā �O)q ,N, n, 1
�

, are defined in a similar manner to the other random

variables in Proposition 2.18.3

3Provided that each period-0 configuration of transfers or stimulus is equally likely, the CDF for
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The expressions for Yagg,q
�

(Ā �O)q ,N, n, 0
�

, Mq
�

(Ā �O)q ,N, n, 0
�

,

Yagg,q
�

(Ā �O)q ,N, n, 1
�

, and Mq
�

(Ā �O)q ,N, n, 1
�

in Proposition 2.18 directly

map to Equations 2.2-2.5 in Section 2.2, where we set Z = (Ā �O)q and g1 = 1.

Accordingly, we can map all of the results from Section 2.2 to the present theoretical

environment. We can characterize the period-specific distributions of aggregate

actions, dynamic economic multipliers, and impulse responses. We can solve for

the moments of these distributions in closed form. We can determine the lowest

possible aggregate action and the highest possible aggregate action for a particular

level of transfers or stimulus, and we can demonstrate how those values depend on

the topology of agents’ interaction network. Based on the asymptotic expansions

that approximate these distributions, we can determine the extent to which agents’

interaction topology leads to skewness and/or heavy-tailedness in the distributions

of possible aggregate actions, dynamic economic multipliers, and impulse responses.

We can also importantly compute both the probability that the dynamic

multiplier is negative and the probability that the aggregate action drops below

its no-intervention level, ynoagg, for finite q and in the limiting case as q ! •.

In this environment with myopic coordination and anti-coordination, there are

different reasons why negative multipliers can arise. We now illustrate a couple

of these pathways. Let’s first consider a setting with transfers. The aggregate

action can decline if an agent receives a positive shock and other agents seek to

anti-coordinate with that particular agent. The aggregate action can separately

decline if an agent receives a negative shock and other agents seek to coordinate

IRFq
�

(Ā �O)q ,N, n, `
�

is

GIRFq((Ā�O)q ,N,n,`) (t) =
1

|B (N, n)| Â
b(N,n)2B(N,n)

1ir fq((Ā�O)q ,b,N,n,`)t for ` 2 {0, 1} .
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with that particular agent. Let’s next consider a setting with stimulus. Every agent

is receiving a non-negative shock at period zero. If we only have coordinating

behavior, then there is zero probability that the multiplier can be negative. However,

if we have anti-coordinating behavior, the aggregate action can decline if the desire

to anti-coordinate with an agent receiving stimulus is sufficiently strong. For the

mechanisms just described, agents are adjusting their actions upward or downward

based on the shocks that their immediate neighbors receive. However, as time

evolves, even though agents are continuing to myopically coordinate and anti-

coordinate with their network neighbors, they are indirectly coordinating and

anti-coordinating with agents whose distance on the network exceeds 1.

We would like to characterize the period-specific aggregate action, dynamic

multiplier, and impulse response in two different null settings. For the first null

setting, there is no underlying network:

Proposition 2.19 In the absence of network-based interaction, Yagg,q
�

(Ā �O)q ,N, n, 0
�

=

ynoagg, Mq
�

(Ā �O)q ,N, n, 0
�

= 0, and IRFq
�

(Ā �O)q ,N, n, 0
�

= 0 with probability 1

for all q 2 Z+, and Yagg,q
�

(Ā �O)q ,N, n, 1
�

= ynoagg + ne, Mq
�

(Ā �O)q ,N, n, 1
�

= n,

and IRFq
�

(Ā �O)q ,N, n, 1
�

= ne with probability 1 for all q 2 Z+.

When there is no network, Ā �O = I, so agents coordinate on their past actions.

In settings with transfers, the aggregate action equals its no-intervention level

for all possible initial configurations and all periods q 2 Z+. In settings with

stimulus, the aggregate action exceeds its no-intervention level by the total amount

of stimulus, ne, and the aggregate action maintains this value for all possible initial

configurations of stimulus and all periods q 2 Z+. Non-trivial network-based

interaction enables us to have a non-degenerate distribution for the aggregate action;

in such an environment, the aggregate action can deviate in either direction away

from its no-intervention level.
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For the second null setting, the aggregate action is invariant to the particular

configuration of transfers or stimulus. We identify the necessary restrictions on

(Ā �O)q that make the period-q aggregate action invariant to configuration, and

we then solve for the resulting values of the aggregate action, the corresponding

economic multiplier, and the impulse response:

Proposition 2.20 If 1T (Ā �O)q = kq1T, the period-q aggregate action, dynamic multi-

plier, and impulse response are invariant to configuration: Yagg,q
�

(Ā �O)q ,N, n, 0
�

=

ynoagg, Mq
�

(Ā �O)q ,N, n, 0
�

= 0, and IRFq
�

(Ā �O)q ,N, n, 0
�

= 0 with probability 1,

and Yagg,q
�

(Ā �O)q ,N, n, 1
�

= ynoagg + kqne, Mq
�

(Ā �O)q ,N, n, 1
�

= kqn, and

IRFq
�

(Ā �O)q ,N, n, 1
�

= kqne with probability 1.

Proposition 2.20 nests the setting of Proposition 2.19 if we set kq = 1. When Ā is

doubly stochastic and Ā �O = Ā, that is, the environment only has coordination,

1T (Ā �O)q = 1T for all q 2 Z+, which makes the aggregate action, economic

multiplier, and impulse response invariant to configuration for all time periods

q 2 Z+. For a transfer or stimulus to generate a negative economic multiplier, we

must deviate from those network topologies characterized in Proposition 2.20, for

which the economic multiplier is invariant to configuration.

The next result allows us to rank networks so that the distributions of

aggregate actions, dynamic multipliers, and impulse responses for the higher-

ranked network first-order stochastically dominate the distributions of aggregate

actions, dynamic multipliers, and impulse responses for the lower-ranked network:

Proposition 2.21 If (Ā0 �O0)q � (Ā �O)q P for some permutation matrix P, then

Yagg,q
�

(Ā0 �O0)q ,N, n, 1
� ⌫ Yagg,q

�

(Ā �O)q ,N, n, 1
�

, Mq
�

(Ā0 �O0)q ,N, n, 1
� ⌫

Mq
�

(Ā �O)q ,N, n, 1
�

, and IRFq
�

(Ā0 �O0)q ,N, n, 1
� ⌫ IRFq

�

(Ā �O)q ,N, n, 1
�

for

all n 2 {1, . . . ,N � 1}.
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We can rank network topologies in settings with stimulus. Proposition 2.21 nests the

case in which a linkage changes from negative to positive; in such an environment,

Ā0 = Ā, but O0 > O. Once we move from anti-coordination to coordination for

one pair of agents, the distribution of aggregate actions first-order stochastically

dominates the original distribution. We are not able to rank network topologies in

settings with transfers because the distribution of aggregate actions always has a

mean equal to its no-intervention level, ynoagg, for every feasible network structure.

Now that we have ranked networks, we proceed to determine the maximum

and minimum possible dynamic multipliers among all networks. First, we must

bound the allowable values for kq:

Lemma 2.7 For all q � 1, kq 2 [�1, 1].

kq = 1 is attainable when Ā �O = Ā, and kq = �1 is attainable when Ā �O = �Ā.

We must also introduce two classes of graphs:

Definition 2.3 Graph G (Z) is a positive star graph and a negative star graph when

the weighted adjacency matrices are respectively:

Z =

0

B

B

B

B

B

B

B

@

0 0 · · · 0 1

0 0 · · · 0 1
...

... . . . ...
...

0 0 · · · 0 1

1

C

C

C

C

C

C

C

A

P and Z =

0

B

B

B

B

B

B

B

@

0 0 · · · 0 �1

0 0 · · · 0 �1
...

... . . . ...
...

0 0 · · · 0 �1

1

C

C

C

C

C

C

C

A

P

for some N ⇥ N permutation matrix P.

In the next proposition, we identify the extremal multipliers in settings with

stimulus. These extremal values hold for all levels n, that is, for all possible levels

of stimulus. We also identify the network topologies that generate these extremal

multipliers, temporarily allowing for the existence of self-loops:
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Proposition 2.22 For every n 2 {1, . . . ,N � 1} and all feasible matrices (Ā �O)q,

max
(Ā�O)q

⇥

max suppMq
�

(Ā �O)q ,N, n, 1
�⇤

= N and

min
(Ā�O)q

⇥

min suppMq
�

(Ā �O)q ,N, n, 1
�⇤

= �N.

These maximum and minimum values are attainable when graph G �(Ā �O)q
�

is respec-

tively a positive star graph and a negative star graph.

Among all networks, in settings with stimulus, the maximum possible dynamic

multiplier is N, and among all networks, in settings with stimulus, the minimum

possible dynamic multiplier is �N. These maximum and minimum values are

attainable for every level of stimulus, that is, for every integer n 2 {1, . . . ,N � 1}. If
G (Ā �O) is a positive star graph, then the maximum possible dynamic multiplier

is attainable for all periods q � 1 and for all levels n 2 {1, . . . ,N � 1} of initial

stimulus due to the idempotence of Ā �O.

We conclude this section by noting that our environment with myopic co-

ordination and anti-coordination is a dynamic one. Provided that Ā �O is semi-

convergent, limq!• (Ā �O)q exists and we can characterize limiting distributions

for the aggregate action, dynamic multiplier, and impulse response in settings with

transfers and settings with stimulus as q ! •. From our random variables in Propo-

sition 2.18, we see that these limiting distributions all depend on the following object:

limq!• bFavg
�

(Ā �O)q ,N, n
�

. In settings with transfers, the limiting distributions

depend on the quantity limq!• kq as well. To compute limq!• bFavg
�

(Ā �O)q ,N, n
�

,

we must determine the limiting vector limq!• d�
w
�

(Ā �O)q
�

.

The remaining theoretical results allow us to solve for limq!• d�
w
�

(Ā �O)q
�

after making specific assumptions. Let us first consider the case in which we only

have coordination, so that Ā �O = Ā:
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Proposition 2.23 If Ā is primitive, then limq!• d�
w (Āq) = w• (Ā), where the pair

�

wT
•, 1

�

is the unique dominant left eigenpair of Ā, wT
•Ā = wT

•, and wT
•1 = 1.

The limiting vector of agent weights is computed by solving for the left eigenvector of

the matrix Ā that pairs with the unit eigenvalue. Provided that Ā is primitive, when

Ā �O = Ā, all agents converge to the same limiting action because limq!• Āq =

1 [w• (Ā)]T. From the row-stochasticity of Ā, we are also able to determine that

limq!• kq = 1.

Given some additional assumptions, in the coordinating environment we

can compute the probability of a negative limiting dynamic multiplier in terms of

the network’s primitives. Let us assume that [Ā]ij > 0 if and only if [Ā]ji > 0 and

agents assign an equal weight to all out-neighbors. Since all linkages in the network

are accordingly reciprocal, we can compute a vector of degrees, d (Ā). The degree

for agent i is equal to the number of non-zero elements in the ith row of Ā: [Ā]i⇤.

Given the vector of degrees, we define a random variable D (Ā) whose realization

is the degree for agent i: [d (Ā)]i.

Proposition 2.24 Suppose that Ā is primitive, [Ā]ij > 0 if and only if [Ā]ji > 0, and all

non-zero elements within every row of Ā have the same value. When n = 1,

Pr
h

limq!• Yagg,q (Āq,N, n, 0) < ynoagg
i

= Pr
⇥

limq!• Mq (Āq,N, n, 0) < 0
⇤

=

Pr [D (Ā) < ED (Ā)].

When one agent receives a positive transfer at time period 0, the probability that

the limiting dynamic multiplier ends up being negative is equal to the probability

that the degree in the network is less than the expected degree.4 Meanwhile, in a

4We can construct propositions similar to Proposition 2.24 for networks G (Ā) that have other
sets of features as well. Refer to Section 1.4 of Chapter 1 for different closed-form formulations of
w• (Ā).
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setting with stimulus, since agents are all coordinating, the probability of a negative

limiting dynamic multiplier is always zero.

Lastly, we consider the case in which we have a mixture of coordinating and

anti-coordinating behavior, so that Ā �O 6= Ā. limq!• d�
w
�

(Ā �O)q
�

exists when

Ā �O is semi-convergent. Under certain assumptions, we can explicitly solve for

limq!• d�
w
�

(Ā �O)q
�

. Let graph G (Ā �O) have edge weight ei,j = [Ā �O]ij. We

characterize limq!• d�
w
�

(Ā �O)q
�

after providing definitions for structural balance

and absolute row-stochasticity:

Definition 2.4 Graph G (Ā �O) = (V (Ā �O) , E (Ā �O)) is structurally balanced if

there exists a partition of nodes V = V1 [ V2, with V1 \ V2 = ∆, such that: (1) if nodes

i, j 2 V` and
�

i, j, ei,j
� 2 E for ` 2 {1, 2}, then sgn

�

ei,j
�

> 0, and (2) if i 2 V` and

j 2 V�` with
�

i, j, ei,j
� 2 E for ` 2 {1, 2}, then sgn

�

ei,j
�

< 0.5

Definition 2.5 Ā �O is absolutely row-stochastic if |Ā �O|, the element-wise absolute

value of matrix Ā �O, is row-stochastic.

We now solve for limq!• d�
w
�

(Ā �O)q
�

:

Proposition 2.25 For Ā � O absolutely row-stochastic, |Ā �O| = Ā primitive, and

G (Ā �O) structurally balanced, limq!• d�
w
�

(Ā �O)q
�

= limq!•
1
N
⇥

(Ā �O)q
⇤T 1 ex-

ists, with limq!• (Ā �O)q =
⇣

1 [w• (Ā)]T
⌘

�O and [w• (Ā)]T Ā = [w• (Ā)]T.

If |V1| < |V2|, then limq!•
⇥

d�
w
�

(Ā �O)q
�⇤

i < 0 if i 2 V1 and

limq!•
⇥

d�
w
�

(Ā �O)q
�⇤

i > 0 if i 2 V2. Since limq!• d�
w
�

(Ā �O)q
� 6= limq!•

kq
N 1,

in settings with transfers, we have a positive probability of a negative limiting

dynamic multiplier for all levels of transfers, that is, for all n 2 {1, . . . ,N � 1}.

5Eger (2016b) refers to this property as +-opposition bipartiteness.
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2.5 Networked Environments with Production

In this third and final setting with network-based interaction among agents, we

consider a production network. We have a population of firms; every firm represents

a different sector. Production by each firm potentially requires both labor and

intermediate goods obtained from other firms. Linkages in the production network

therefore capture the flow of intermediate goods between firms. Specifically, the

directed edges of the network designate downstreamness in production; for each

firm, these edges point towards the firm’s customers.

Now, given the production network, we are interested in the nominal value

of aggregate output, or GDP. In particular, we are interested in the distribution

of possible levels of GDP that result when a random subset of sectors receives a

positive demand shock. Sectors differ in their importance within the production

network, so depending on which group of sectors receives a positive demand shock,

we can potentially have strong variation in GDP. We are also interested in the

distribution of possible economic multipliers. We would like to know the change in

GDP that results when a certain subset of sectors receives a positive demand shock

of a particular magnitude. Depending on the structure of the production network,

we can imagine that the multiplier on GDP varies with the group of sectors actually

receiving the positive demand shock. For certain groups of sectors, the boost in

GDP is larger than that for other groups.

We proceed to describe this section’s theoretical environment. There are N

sectors with one good associated with each sector, so there are N total goods. Our

representative consumer has Cobb-Douglas utility over the consumption bundle

c =
✓

c1 · · · cN

◆T
:

U (c) =
N

’
i=1

chi
i .
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We set ÂN
i=1 hi = 1. Each good is produced by a competitive sector; the good is either

consumed or used in the production of other goods. The production technology for

the representative firm in each sector takes a Cobb-Douglas form:

xi = Aai
i `

ai
i

 

N

’
j=1

x
[L]ji
ji

!

bi

.

Ai is a sector-specific productivity parameter; productivity is labor-augmenting. `i

denotes the amount of labor used in the production of good i. The representative

consumer has no disutility from labor, so labor is inelastically supplied. xji denotes

the quantity of the sector-j good required in the production of the sector-i good.

Exponent [L]ji captures how intensely the sector-j good is used in the production of

the sector-i good; [L]ji represents the share of good j in total intermediate input use

by sector i. We assume that the production technology for each sector is constant

returns to scale, that is, ai + bi = 1 8i 2 {1, . . . ,N}. Parameters ai and bi can

differ across sectors; sectors vary in the intensities with which they use labor and

intermediate inputs. We also assume that L is column-stochastic; this ensures that

the overall sectoral production function is constant returns to scale. The production

network in this environment is Z0 = G (L).

In this economy, each firm i 2 {1, . . . ,N} maximizes its profit pi: pi =

pixi � ÂN
j=1 pjxji � w`i, where pi is the price of good i and w is the wage rate.

The representative consumer maximizes its utility subject to a resource constraint:

ÂN
i=1 pici = w ÂN

i=1 `i + ÂN
i=1 pi. Labor market clearing requires that the supply of

labor equals the total demand for labor: 1 = ÂN
i=1 `i, where we set the supply of

labor equal to 1. Goods market clearing requires that, for each sector i 2 {1, . . . ,N},
the supply of the good equals the demand for that good: xi = ci + ÂN

j=1 xij. We

define the matrix X with elements xij, the quantity of the sector-i good used in the

production of the good from sector j.
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A competitive equilibrium in this economy can be characterized as follows:

Definition 2.6 A competitive equilibrium is a collection of quantities, c⇤, x⇤, X⇤, and

`⇤, and a collection of prices, p⇤ and w⇤, such that:

1. The representative consumer maximizes utility subject to a budget constraint:

max
c1,...,cN

N

’
i=1

chi
i s.t.

N

Â
i=1

pici = w
N

Â
i=1

`i +
N

Â
i=1

pi.

2. Each firm i 2 {1, . . . ,N} maximizes profit given its production technology:

max
x1i,...,xNi,`i

pixi �
N

Â
j=1

pjxji � w`i

s.t. xi = Aai
i `

ai
i

 

N

’
j=1

x
[L]ji
ji

!

bi

8i 2 {1, . . . ,N} .

3. The goods markets clear for all sectors i 2 {1, . . . ,N} and the labor market clears:

xi = ci +
N

Â
j=1

xij 8i 2 {1, . . . ,N} and
N

Â
i=1

`i = 1.

We then have the following result:

Proposition 2.26 The economy admits a competitive equilibrium with quantities c⇤, x⇤,

X⇤, and `⇤, and prices p⇤ and w⇤.

We define y⇤i = p⇤i x
⇤
i as the nominal value of output in sector i and y⇤ as the vector

of nominal values of output across all N sectors. We are interested in the nominal

value of aggregate output, yagg:

yagg = 1Ty⇤ =
N

Â
i=1

p⇤i x
⇤
i .

In the next theoretical result, we compute y⇤ in closed form, from which we can

then compute in closed form the nominal value of aggregate output, otherwise
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known as GDP: yagg = 1Ty⇤.

Proposition 2.27 The vector of equilibrium levels of nominal output for all N sectors is:

y⇤ = (I� Ldiag (b))�1 hw. The nominal value of aggregate output is yagg = 1Ty⇤.

With L column-stochastic and bi 2 (0, 1) for every sector i, I� Ldiag (b) is invert-

ible6 and GDP is readily computable. We can re-write y⇤ as follows:

y⇤ =

 

•

Â
j=0

(Ldiag (b))j
!

hw =
⇣

I+ Ldiag (b) + (Ldiag (b))2 + · · ·
⌘

hw.7

From this expansion, we see that aggregate expenditure in a particular sector

depends on both demand from the representative consumer, the first term in the

expansion, and industry demand from other sectors, the remaining terms in the

expansion. Industry demand for a particular sector’s good comes from both first-

order and higher-order connections in the production network. Industry demand

from first-order connections arises when there are sectors directly requiring that

particular good as an intermediate input. Meanwhile, industry demand arises from

higher-order connections when our good of interest indirectly appears in the output

of another sector via a supply chain that is greater than length 1.

We would like to study what happens to GDP when a group of sectors

receives a positive demand shock. To determine this effect, we first compute the

baseline level of GDP in the absence of any transfers or stimulus, ynoagg. We then

compare it to the level of GDP following the implementation of a particular policy

that adjusts the final demand of various sectors. The baseline level of GDP is as

6The invertibility of I� Ldiag (b) is proven in Lemma B.2, which can be found in Appendix B.1.

7This expansion holds provided that 1 is smaller than the norm of the inverse of the largest
eigenvalue of Ldiag (b). As demonstrated by Lemma B.2 in Appendix B.1, r (Ldiag (b)) < 1, so
this condition holds.
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follows:

ynoagg = 1Ty⇤ = N
h

d�
w

⇣

(I� Ldiag (b))�1
⌘iT

hw,

where d�
w

⇣

(I� Ldiag (b))�1
⌘

= 1
N

h

(I� Ldiag (b))�1
iT

1 is the vector of average

weighted in-degrees for the network G
⇣

(I� Ldiag (b))�1
⌘

. Agents’ weights sum

to k: 1Td�
w

⇣

(I� Ldiag (b))�1
⌘

= k. In our environment, we have two relevant

networks: (1) the production network, G (Z0) = G (L), that captures the flow

of intermediate goods, and (2) the network, G (Z) = G (I� Ldiag (b))�1, that

determines each sector’s effective weight in the production ecosystem. Sectors’

weights, d�
w

⇣

(I� Ldiag (b))�1
⌘

, determine how much of an effect a demand

shock has on overall GDP. The more influential the sector, the greater the effect on

GDP.

We study two different settings in which a group of sectors receives a positive

demand shock: (1) a setting with transfers and (2) a setting with stimulus. For

the setting with transfers, a group of sectors receives a positive shock to final

demand, while all other sectors receive a negative demand shock. For the setting

with stimulus, a group of sectors receives a positive shock to final demand, while

all other sectors receive no shock. We are interested in the level of GDP and the

corresponding economic multiplier in these two settings. The economic multiplier

captures the change in GDP when a group of sectors receives a positive shock to

final demand that is of some particular magnitude.

To show how the nominal value of aggregate output changes in settings with

transfers and stimulus, we first rewrite ynoagg:

ynoagg = N
h

d�
w

⇣

(I� Ldiag (b))�1
⌘iT

w,

where w = hw. The vector w is a vector of sector-specific expenditures on final

goods. These expenditures are made by the representative consumer: p⇤i c
⇤
i = [w]i.
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In a setting with transfers or externally funded stimulus, the vector of expenditures

on final goods across the N sectors changes from w to w + r.

Specifically, in a setting with transfers, [r]i = e if sector i is receiving a

positive shock to final demand and [r]i = � ne

N�n if sector i is not receiving a positive

shock to final demand. In this setting with transfers, the total expenditure on final

goods remains unchanged from its no-intervention level: 1T (w + r) = 1Tw. We

now describe how the transfer of funds across sectors gets implemented. We have

a government that is interested in making purchases. Let p⇤i g
⇤
i be the amount of

government expenditure in sector i, where g⇤i is the total number of units of good i

purchased by the government. To finance its purchases, the government levies a

lump-sum tax t on the representative consumer. The amount of expenditure by the

representative consumer in every sector i is then p⇤i c
⇤
i = hi (w� t). The amount of

expenditure by the government is p⇤i g
⇤
i = hit + e if sector i is receiving a positive

transfer and p⇤i g
⇤
i = hit � ne

N�n if sector i is not receiving a positive transfer. n

sectors, in total, receive a positive shock to final demand. Note that the total amount

of expenditure by the government is equal to its tax revenue: ÂN
i=1 p⇤i g

⇤
i = t. Also

note that p⇤i c
⇤
i + p⇤i g

⇤
i = [w]i + [r]i for every sector i 2 {1, . . . ,N}.

In a setting with stimulus, [r]i = e if sector i is receiving a positive shock to

final demand and otherwise [r]i = 0. Now, the total expenditure on final goods

increases by ne units relative to the no-intervention level: 1T (w + r) = 1Tw + ne.

The government receives these ne units of wealth from an external source. The

government sets p⇤i g
⇤
i = e if it wishes to provide positive stimulus to sector i, and

otherwise p⇤i g
⇤
i = 0. n sectors receive positive stimulus. Note that ÂN

i=1 p⇤i g
⇤
i = ne

and that p⇤i c
⇤
i + p⇤i g

⇤
i = [w]i + [r]i for every sector i 2 {1, . . . ,N}.

Depending on which sectors get a positive shock to final demand, we can have

variation in the resulting level of GDP and the corresponding economic multiplier.
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Configuration vector b (N, n) 2 B (N, n) identifies which subset of n  N sectors

is receiving a positive demand shock. Element bi = 1 if sector i receives a positive

shock to final demand and otherwise bi = 0.

We begin by characterizing GDP and the economic multiplier on GDP in a

setting with transfers. Sectors 1, . . . , n receive a positive shock to final demand and

sectors n+ 1, . . . ,N receive a negative shock to final demand so that there is zero

net transfer across sectors. In this setting, bi = 1 for i 2 {1, . . . , n}:

yagg
⇣

(I� Ldiag (b))�1 ,b,N, n, 0
⌘

= ynoagg + Ne

h⇣h

d�
w

⇣

(I� Ldiag (b))�1
⌘i

1

+ · · ·+
h

d�
w

⇣

(I� Ldiag (b))�1
⌘i

n

⌘

� n
N � n

✓

h

d�
w

⇣

(I� Ldiag (b))�1
⌘i

n+1

+ · · ·+
h

d�
w

⇣

(I� Ldiag (b))�1
⌘i

N

⌘i

with m
⇣

(I� Ldiag (b))�1 ,b,N, n, 0
⌘

=
dyagg((I�Ldiag(b))�1,b,N,n,0)

de

. We continue

by characterizing GDP and the economic multiplier on GDP in a setting with

stimulus. Now, sectors 1, . . . , n receive a positive shock to final demand while sectors

n+ 1, . . . ,N receive zero shock to final demand. Setting bi = 1 for i 2 {1, . . . , n}, we

have

yagg
⇣

(I� Ldiag (b))�1 ,b,N, n, 1
⌘

= ynoagg + Ne

⇣h

d�
w

⇣

(I� Ldiag (b))�1
⌘i

1

+ · · ·+
h

d�
w

⇣

(I� Ldiag (b))�1
⌘i

n

⌘

with m
⇣

(I� Ldiag (b))�1 ,b,N, n, 1
⌘

=
dyagg((I�Ldiag(b))�1,b,N,n,1)

de

.

We are interested in all possible levels of GDP and all possible multipliers

given that n sectors receive a positive shock to final demand. We therefore introduce

random variables that allow us to characterize the distribution of possible levels of

GDP as well as the distribution of possible economic multipliers given n:

Proposition 2.28 In a setting with transfers, the GDP and the corresponding economic
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multiplier are:

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

= ynoagg

+
N2

e

N � n



bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

� kn
N

�

and

M
⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

=
N2

N � n



bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

� kn
N

�

.

In a setting with stimulus, the GDP and the corresponding economic multiplier are:

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

= ynoagg + Ne

bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

and

M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

= NbFavg
⇣

(I� Ldiag (b))�1
⌘

.

The expressions for Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

,

M
⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

, Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

, and

M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

in Proposition 2.28 directly map to Equations 2.2-2.5

in Section 2.2, where we set Z = (I� Ldiag (b))�1 and g1 = 1.

All of the theoretical results from Section 2.2 therefore map to the present

environment. Given that we are in a setting with transfers or a setting with stimulus

and n sectors have received a positive shock to final demand, we can directly

compute in closed-form the resulting mean level of GDP and the mean economic

multiplier. We can compute the variance of these distributions as well. Moreover,

for a particular production network G (L), we can determine the lowest possible

level of GDP, the highest possible level of GDP, the lowest possible economic

multiplier, and the highest possible economic multiplier given that n sectors are

receiving a positive shock to final demand. For all feasible production networks

G (L) with N sectors, for any given N, and n sectors receiving a positive shock to

final demand, we can approximate the cumulative distribution functions for GDP
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and the corresponding economic multiplier. Quite importantly, we can analytically

determine the probability that a particular policy measure, whether it be a transfer

of funds across sectors or externally funded stimulus, leads to a reduction in GDP

below its no-intervention level and a negative economic multiplier. GDP dips below

its no-intervention level when the economic multiplier is negative.

In settings with stimulus, it turns out that the probability of a negative

multiplier is always zero. GDP following an intervention that targets n sectors for

stimulus is at least as large as GDP in the absence of any intervention. This property

holds for all feasible levels of stimulus, that is, for all n 2 {1, . . . ,N � 1}:

Proposition 2.29 For every n 2 {1, . . . ,N � 1},

Pr
h

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

� ynoagg
i

= 1 and

Pr
h

M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

� 0
i

= 1.

Stimulus always weakly increases GDP. Given e units of stimulus for n sectors, the

multiplier is always non-negative.

The results that we have provided thus far hold for any feasible network

structure G (L). We now study what happens to the distribution of GDP and

the distribution of corresponding economic multipliers when the network is triv-

ial. Specifically, we consider an environment in which there is no network-based

interaction. To be consistent with the other sections, we declare an absence of

network-based interaction when L = I, the identity matrix:

Proposition 2.30 In the absence of any network-based interaction,

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

, M
⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

,

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

, and M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

have the same
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functional form as in Proposition 2.28, with

h

d�
w

⇣

(I� Ldiag (b))�1
⌘iT

=
1
N

✓

1
1�b1

· · · 1
1�bN

◆

.

Provided that we do not have b1 = · · · = bN, the distributions of GDP and eco-

nomic multipliers are non-degenerate. Both GDP and the corresponding economic

multiplier can vary with the particular configuration of transfers or stimulus even

when there is no underlying network structure. This feature of non-degeneracy

distinguishes the present environment from those of the other two sections. In the

other two sections, once we removed the network structure, the distribution of the

aggregate action and the distribution of the corresponding economic multiplier both

became degenerate. In those two environments, by removing the agent interaction

structure, all agents became identical; the aggregate action and the economic multi-

plier were the same regardless of which subset of agents received a positive transfer

or positive stimulus. In the present environment with production, even though we

are eliminating any heterogeneity that arises from the topology of the production

network, there is still heterogeneity across sectors; each sector differs in the intensity

with which it uses intermediate inputs, which makes the level of GDP vary and the

value of the economic multiplier vary with the particular configuration of transfers

or stimulus.

Once b1 = · · · = bN ⌘ b, both GDP and the corresponding economic

multiplier are invariant to configuration for all levels, n, of transfers or stimulus:

Proposition 2.31 Both GDP and the corresponding economic multiplier are invariant to

configuration if and only if b1 = · · · = bN ⌘ b:

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

= ynoagg and M
⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

= 0
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with probability 1, and

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

= ynoagg +
ne

1� b

and

M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

=
n

1� b

with probability 1.

When every sector has the same labor intensity, that is, b1 = · · · = bN, both GDP

and the corresponding multiplier are invariant to configuration for any production

network G (L), provided that L is column-stochastic. In such an environment,

the distribution of GDP and the distribution of possible economic multipliers are

both degenerate. In settings with transfers, GDP equals its no-intervention level

regardless of which group of sectors receives a positive shock and regardless of

how many sectors receive this positive shock. This result holds for all feasible

networks G (L). In settings with stimulus, there is an increase in GDP relative to its

no-intervention level, but this level of GDP remains the same regardless of which

group of sectors receives positive stimulus.

2.6 Conclusion

This paper studies economic systems with N networked agents, n  N of whom

each initially receive a positive shock that is either financed by internal transfers

or external stimulus. This work examines the resulting probability distributions

of possible aggregate actions and economic multipliers given n. Agents’ actions

are interconnected, with such interdependency captured by the topology of an

interaction network. As the particular configuration of positive shocks to agents

varies, holding n fixed, agents’ actions adjust so that the aggregate action varies as
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well. In general, the distribution of possible aggregate actions and the distribution

of possible economic multipliers are non-degenerate. We explore these distributions

of aggregate actions and corresponding economic multipliers in three different

networked environments: (1) those featuring strategic complements and substitutes,

(2) those featuring coordination and anti-coordination, and (3) those featuring

production.

Despite strong differences across these three environments, the core mathe-

matics is the same. For each environment, given agents’ decision-making behavior

and the underlying network structure, we construct a network-derived vector of

agent weights, the vector of average weighted in-degrees for graph G (Z). It is from

this vector of agent weights that we can characterize in closed form all essential

features of the distribution of aggregate actions and the corresponding distribution

of economic multipliers. For all feasible population sizes N, number of agents

receiving a positive shock, n, and network topologies, we can compute the mean

aggregate action and the mean economic multiplier. We can also compute in closed

form the variance for these two distributions, the bounds on the support of these

distributions, the corresponding limiting distributions as N ! •, and approxima-

tions to the CDFs of these two distributions for finite N. We study the aggregate

action and the economic multiplier when there is no underlying network structure

and when the network topology is such that these two quantities are invariant to

configuration. In addition, for certain environments, we can rank networks so that

the distributions of possible aggregate actions and economic multipliers correspond-

ing to a higher-ranked network first-order stochastically dominate the distributions

of possible aggregate actions and economic multipliers for a lower-ranked network.

As a result, the higher-ranked the network, the more effective the policy.

Quite importantly, we develop and use a set of tools that allows us to
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analytically compute the probability of a negative economic multiplier given agents’

decision-making behavior and a particular aggregate level, ne, of transfers or

stimulus. The set of network-derived agent weights ultimately shapes the probability

that a particular environment generates negative economic multipliers. In settings

with transfers, practically every network structure generates a negative multiplier

with a positive probability. Quantifying the probability of a negative economic

multiplier or an aggregate action below its no-intervention level is important because

it captures the extent to which a policy is ineffective. Policy-making entities craft

policy measures to achieve particular objectives, such as jump-starting an economy

during recession. If the naturally occurring agent interaction structure is such that

there is a non-negligible positive probability of a negative economic multiplier, then

the policy-making entity may rethink its policy prescription. When the policy is

financed by internal transfers, there is no outright cost to the policy-making entity,

except that it is transferring funds away from individuals. However, when the policy

is financed by external stimulus, perhaps by issuance of debt, the policy-making

entity ultimately must provide repayment, and if the economic multiplier following

stimulus is negative, it becomes all the more difficult to repay borrowed funds. If

the policy-making entity does not have a good grasp of the topology of agents’

interaction structure, then enacting a policy can be quite risky, as there are entire

non-degenerate distributions of possible resulting aggregate actions and economic

multipliers.

In essence, this work extends and applies a set of tools that allows us to

construct in closed form policy-induced distributions of possible aggregate actions

and economic multipliers in environments with complex, network-based agent

interactions. The tools and the methodology implemented in this work are general.

Hopefully they can be applied to a broad range of diverse settings and provide
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substantive insights.
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Chapter 3

Comprehensively Stress Testing the

Economy

3.1 Introduction

The 2008 global financial crisis and the concomitant Great Recession consisted of an

unprecedented series of events and adjustments to the macroeconomic and financial

landscape. Within the domestic housing market, home prices fell approximately

30 percent from mid-2006 to mid-2009.1 In the United States, both investment

bank Lehman Brothers and savings and loan institution Washington Mutual failed.

Financial institutions Bear Stearns, Merrill Lynch, AIG, Freddie Mac, Fannie Mae,

and Wachovia experienced some form of rescue or bailout. Globally, Northern Rock,

HBOS, Royal Bank of Scotland, Bradford & Bingley, Fortis, Hypo Real Estate, and

Alliance & Leicester likewise experienced some form of rescue, bailout, and/or

1https://www.federalreservehistory.org/essays/great_recession_of_200709. Accessed March 18,
2019.
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nationalization.2 The unemployment rate in the United States increased from

5 percent in December 2007 to 10 percent in October 2009, real United States GDP

contracted by 4.3 percent between the fourth quarter of 2007 and the second quarter

of 2009, and the S&P 500 index fell 57 percent from its peak in October 2007 to its

trough in March 2009. Net worth across United States households and nonprofit

organizations fell from a peak of approximately 69 trillion dollars in 2007 to a

trough of approximately 55 trillion dollars in 2009.3 To bring greater stability to the

financial system, the United States federal government implemented the Troubled

Asset Relief Program (TARP), in which it purchased troubled companies’ assets and

equity. For TARP, Congress authorized the United States Treasury 475 billion dollars

to make purchases; the Treasury principally used this money to stabilize banks,

develop programs to increase credit availability, rescue the United States automobile

industry, stabilize AIG, and buttress programs that prevent foreclosure.4 Globally,

real GDP growth decreased from 5.6 percent in 2007 to 0.1 percent in 20095, and the

financial crisis spurred a European sovereign debt crisis for the countries of Iceland,

Portugal, Italy, Ireland, Greece, Spain, and Cyprus.

The global financial crisis led different governmental and supervisory authori-

ties to massively reassess both their regulatory roles and existing financial regulation.

The Basel Committee on Banking Supervision developed a set of recommendations

for regulation, known as Basel III, in response to the global financial crisis. Basel III

2https://www.theguardian.com/business/2008/dec/28/markets-credit-crunch-banking-2008.
Accessed March 18, 2019.

3https://www.federalreservehistory.org/essays/great_recession_of_200709. Accessed March 18,
2019.

4https://www.investopedia.com/terms/t/troubled-asset-relief-program-tarp.asp. Accessed
March 18, 2019.

5https://blog.euromonitor.com/global-economy-10-years-after-financial-crisis. Accessed March
18, 2019.
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focused on strengthening regulation, supervision, and risk management of financial

institutions to ensure financial stability. For example, Basel III sought to improve

the quality of bank regulatory capital, increase the level of capital requirements,

constrain excess leverage, and mitigate excess liquidity risk. The Basel Committee

included representatives from central banks and regulatory authorities around the

world, and in general, its members applied these standards in their own jurisdictions;

indeed, the Federal Reserve announced that in December 2011 it would implement

essentially all of the Basel III regulations. Within the United States, the Dodd-Frank

Wall Street Reform and Consumer Protection Act, signed into federal law in July

2010, represented the federal government’s response to the global financial crisis.

The Dodd-Frank Act made significant changes to financial regulation to improve

financial stability and consumer protection. It promoted financial stability through

creation of the Financial Stability Oversight Council and the Office of Financial

Research, and it advocated for consumer protection in the financial industry through

creation of the Consumer Financial Protection Bureau. The Dodd-Frank Act addi-

tionally introduced corporate governance reforms, executive compensation reforms,

credit rating agency regulation, securitization retention requirements, procedures

for regulatory enforcement, and regulation of over-the-counter derivatives, among

other types of regulation.6

Both Basel III and the Dodd-Frank Act led to major adjustments in financial

regulation. They equipped regulators and supervisory institutions with new tools

to assess the stability of individual financial institutions and the financial system

as a whole, and they broadened these supervisory institutions’ mandates. For

example, Basel III introduced a set of statistics for central banks to collect from

6https://corpgov.law.harvard.edu/2010/07/07/summary-of-dodd-frank-financial-regulation-
legislation/. Accessed March 18, 2019.
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the balance sheets of financial institutions. Basel III provided minimum and/or

maximum allowable values for these statistics, which included capital ratios, and

failure to meet these guidelines forced financial institutions to adjust their balance

sheets. Given all of these new regulations and guidelines, we might wonder

whether the resulting constrained financial system would now be able to survive

and maintain normal operations after encountering the same economic conditions

that had precipitated the 2008 global financial crisis. To answer this question, we

would need to construct a scenario mimicking the start of the financial crisis and

the Great Recession, and we would need to examine whether the financial system

could withstand such stresses. This process of scenario design and stress testing is

exactly what the Federal Reserve decided to do in response to the global financial

crisis. A massive part of the Federal Reserve’s post-crisis regulatory toolkit involved

designing stressful economic and financial scenarios and quantifying these scenarios’

effects on financial institutions’ capital holdings and balance sheets.

Following the financial crisis, in May 2009, the committee behind Basel III

published guidelines for stress testing. Within the United States, the Dodd-Frank

Act mandated that the Federal Reserve conduct annual supervisory stress tests

for sufficiently large bank holding companies, which essentially includes large

banks and other large financial institutions. The Federal Reserve decided to jointly

implement these Dodd-Frank Act stress tests and a process of comprehensive capital

analysis and review (CCAR); the former focused on studying financial institutions’

balance sheet items under stressed scenarios, while the latter focused on studying

financial institutions’ capital adequacy under stressed scenarios, thus making the

Federal Reserve’s annual supervisory stress tests and CCAR complementary. Not

only is stress testing a core part of the supervisory toolkit, it is also a key tool for

internal risk management by financial institutions. The Federal Reserve’s stress

162



www.manaraa.com

tests, in principal, can potentially capture broad risks, while individual financial

institutions’ stress tests can capture the idiosyncratic risks that are germane for each

institution.

Adhering to the requirements of the Dodd-Frank Act, the Federal Reserve

undertakes the following stress testing process. It conducts annual supervisory

stress tests for sufficiently large financial institutions. Each stress test involves

crafting a different real-world scenario that perturbs certain economic quantities of

interest. With the Federal Reserve required to carry out three stress tests, it therefore

crafts three different scenarios: (1) a baseline scenario, (2) an adverse scenario, and

(3) a severely adverse scenario. The Federal Reserve uses data provided by the

financial institutions, and it examines how the three different stress scenarios impact

each financial institutions’ balance sheets and capital holdings. There are many

possible economic variables to perturb in constructing stress tests, so the Federal

Reserve takes the following approach. It requires every sufficiently large financial

institution to undertake a macroeconomic stress test. The baseline scenario, the

adverse scenario, and the severely adverse scenario are all constructed from the

perturbations of mainly macroeconomic variables, such as the unemployment rate

or the growth rate of GDP. Financial institutions that have significant trading activity

must also add a global market shock to their macroeconomic stress tests. The global

market shock is an add-on component to the macroeconomic adverse scenario

and the severely adverse macroeconomic scenario. For the global market shock,

various market factors can adjust, such as equity prices, private equity values, and

foreign exchange rates. Financial institutions with substantial trading or processing

and custodian operations must additionally incorporate counterparty default into

their stress tests. Counterparty default is an add-on component to each stress

test. Each financial institution must estimate and report potential losses and effects
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on capital that would result if the institution’s largest counterparty unexpectedly

defaulted. The Federal Reserve applies the same set of supervisory stress tests to

each financial institution. In addition to these supervisory scenarios, every financial

institution must carry out its own internal stress test. The results of the Federal

Reserve’s supervisory stress tests and each financial institution’s stress test are

publicly disclosed.

The Federal Reserve’s stress testing approach has several limitations. The

number of stress tests that get conducted annually is very small. Each year, the

Federal Reserve only carries out three supervisory stress tests for every sufficiently

large financial institution: a baseline scenario, an adverse scenario, and a severely

adverse scenario. Each supervised financial institution must also execute one

additional stress test. These four scenarios are not enough to ensure that the financial

system has been comprehensively stress tested. Indeed, the Federal Reserve’s

baseline scenario, adverse scenario, and severely adverse scenario sometimes involve

perturbations of the same underlying economic variables. What then distinguishes

these scenarios are the magnitudes by which these perturbed economic variables

adjust; the severely adverse scenario, for example, might simply feature greater

magnitudes of adjustment for the underlying economic variables than the adverse

scenario. As a result, the supervisory scenarios do not necessarily capture different

ways that a financial system can become stressed. Moreover, the stress test scenarios

crafted by individual financial institutions are sometimes inspired by the Federal

Reserve’s supervisory stress tests; consequently, these scenarios do not identify the

idiosyncratic risks that can potentially destabilize individual financial institutions.

There exist additional weaknesses beyond the number of annual stress tests

being very small. The supervisory stress test scenarios are often calibrated to past

historical events. While that does serve as a reasonable benchmark, it is unlikely that
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history will exactly repeat itself. The economy may inevitably evolve along certain

pathways that precipitate recessions and/or financial crises, but it is unlikely that

these pathways will always be identical; the circumstances generating recessions

and/or financial crises are not always the same. Financial institutions might be able

to withstand stress test scenarios that mimic the onset of the 2008 global financial

crisis, but that does not mean that the financial system is stable. The Federal Reserve

may as a result be lulled into a false sense of financial system stability. Moreover,

the Federal Reserve’s stress test scenarios have not substantially changed over the

years. With financial institutions adjusting their operations and portfolios to satisfy

the Federal Reserve’s stress tests, they may all become vulnerable to other realistic

forms of risk. It is difficult to know what exactly should be the ideal set of stress

test scenarios to ensure financial system stability. For instance, the Federal Reserve’s

current approach to stress testing generally assumes that stress originates within the

macroeconomy, hence its stress testing scenarios primarily being macroeconomic

scenarios. It is, however, plausible that stresses within the financial system initiate

financial crises, which would make market risk scenarios more relevant.

The current stress testing approach within the United States presents several

legitimate concerns. This chapter devises a solution to address all of these con-

cerns. We can tackle all of the stated weaknesses in the Federal Reserve’s current

stress testing approach by massively increasing the number of distinct stress tests

conducted annually. One might argue that drastically increasing the number of

distinct stress test scenarios generates its own set of problems: for example, it

can enormously increase the computational burden, and the process of generating

additional scenarios can potentially be very haphazard. The present work addresses

these critiques. It develops a systematic approach for scaling up the number of

stress test scenarios, and it shows how to substantially increase the number of stress
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tests without increasing the computational burden. The procedure presented in this

work for comprehensively stress testing the economy and the financial system can

benefit the Federal Reserve, it can benefit individual financial institutions that carry

out internal assessments of risk, and it can benefit central banks and supervisory

institutions globally.

To illustrate the approach that the present work takes, let’s start off with

an example. Imagine that there exists a stress test scenario in which the Indian

rupee depreciates by 10 percent. We are interested in the effects of this depreciation

on the balance sheets of individual financial institutions and the financial system

as a whole. Given this particular stress test scenario, we can generate an entire

class of stress tests. At the highest level, what we are interested in here is the

effect of exchange rate risk on the financial system. We therefore develop a class

of stress tests, and each stress test within this class is distinguished by the type of

foreign currency facing a 10-percent depreciation; the first stress tests features a 10-

percent depreciation of the Indian rupee, the second stress test features a 10-percent

depreciation of the euro, the third stress test features a 10-percent depreciation of

the Mexican peso, and so on. The number of stress tests within this class is then

equal to the number of foreign currencies. Therefore, given our one initial stress

test, we have generated an entire class of possible stress tests. For this class, we can

construct in closed form a probability distribution that summarizes balance sheet

effects for each individual financial institution, and we can construct a probability

distribution that summarizes balance sheet effects for the entire financial system.

Rather than having individual data points, we have entire probability distributions

capturing exchange rate risk for the financial system.

Now, let’s instead imagine that there exists a stress test scenario in which

the Indian rupee depreciates by 10 percent and the euro appreciates by 15 percent.
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Here, we have a different form of exchange rate risk. As in the previous example,

we proceed to generate an entire class of stress test scenarios capturing this form of

exchange rate risk. For every stress test within the class, we pick one currency to

depreciate by 10 percent, and we pick a separate currency to appreciate by 15 percent.

The class exhausts all possible combinations of appreciating and depreciating

currencies, so that the total number of stress tests within this class is combinatorial.

Given this class of stress tests, there is a corresponding probability distribution

summarizing balance sheet effects for each financial institution, and there is a

corresponding probability distribution summarizing balance sheet effects for the

overall financial system; we can solve for the major statistical features of these

probability distributions in closed form.

The present work thus takes the following approach. It constructs different

classes of stress tests. Each of these classes of stress tests is distinguished by its

categories of risk. For example, one class of stress tests might feature certain levels of

exchange rate risk and sectoral risk, while another class of stress tests might feature

a particular magnitude increase in the probability of default for a type of debt.

There are different ways that these types of risk can enter into the financial system;

for example, exchange rate risk can separately manifest itself in assets denominated

in different currencies. Each stress test scenario within a particular class therefore

represents a different way that these types of risk manifest themselves. The set of

stress test scenarios within a particular class is exhaustive; there are no additional

ways that these types of stresses can be distributed within the financial system.

For each class of stress tests, we construct a probability distribution that captures

balance sheet effects for each individual financial institution, and we construct a

probability distribution that captures balance sheet effects for the overall financial

system. Through this approach, we massively increase the number of stress test
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scenarios in a systematic fashion without increasing the computational burden.

One last criticism of the Federal Reserve’s current stress testing approach is

that it is not sufficiently macroprudential. Even though the global financial crisis

exposed the weaknesses of regulatory approaches that are too microprudential, the

Federal Reserve’s shift from a microprudential regulatory approach to one that is

relatively more macroprudential has mostly been nominal. The present work takes

steps towards making the Federal Reserve’s regulatory approach relatively more

macroprudential. Macroprudential regulation is concerned with risks at the level

of the financial system. The present work approaches the stress testing process

by identifying categories of risk and then specifying the different ways that such

risk can manifest itself within the financial system. This top-down perspective is

fundamentally macroprudential. The present work moreover discerns how networks,

a fundamentally macroprudential object, shape financial stability. One of the main

networks studied in this work is a bipartite network that links financial institutions

to assets. The present work shows, given a particular class of stress tests, how the

topology of the bipartite network shapes stress tests’ effects on the financial system.

More precisely, the topology of the bipartite network determines the shape of this

corresponding probability distribution.

3.1.1 Relation to the Literature

The present chapter focuses on stress tests and how to massively improve this major

part of the Federal Reserve’s supervisory toolkit. Hirtle and Lehnert (2015) provides

background on stress testing in the United States and discusses the objectives of

stress testing. Glasserman and Tangirala (2016), Demekas (2015), and Anderson

(2016) also provide a history and overview of stress tests. Acharya et al. (2014) and

Borio et al. (2014) discuss macroeconomic stress tests, in which macroeconomic
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factors adjust and cause the transmission of shocks to the financial system. A

weakness of macroeconomic stress tests, as Bookstaber et al. (2014) discuss, is that

they neglect scenarios in which shocks to the financial system themselves cause

economic downturns. Consistent with this critique, the present work considers

finance-specific stress tests scenarios that directly affect financial institutions’ balance

sheets rather than scenarios primarily motivated by macroeconomic adjustments.

Petrella and Resti (2013) and Scheurmann (2014) both weigh the costs and benefits

of publicly disclosing the results of stress tests.

The literature has highlighted a couple of weaknesses regarding the Federal

Reserve’s stress testing approach. First, as Glasserman and Tangirala (2016) men-

tion, the Federal Reserve’s stress tests have not drastically changed over the years.

Financial institutions have adjusted their balance sheets so that they can withstand

the Federal Reserve’s stress tests, but in doing so, they may not be able to survive an

actual stress scenario that differs from the ones implemented by the Federal Reserve.

Second, the Federal Reserve carries out too few stress test scenarios; Bookstaber

et al. (2014), Demekas (2015), and Glasserman and Tangirala (2016) all discuss the

need to increase the number of stress test scenarios. Grundke (2011) addresses the

issue of scenario selection by instead carrying out reverse stress tests; instead of

deciding which scenarios are appropriate, the supervisory institution identifies a

certain outcome or threshold of interest and then generates stress scenarios that

would yield that particular outcome. Reverse stress tests have their own weaknesses.

For reverse stress tests, the outcome or threshold must be very specific, and the

number of stress test scenarios that can yield that particular outcome is potentially

extremely large. It is often not feasible for the regulatory institution to entertain all

of these possible stress scenarios. The present work instead focuses on massively

increasing the number of stress test scenarios without increasing the computational
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burden. It generates classes of stress tests that each contain a very large number of

individual stress tests. Associated with each class of stress tests is a corresponding

probability distribution that summarizes the effects of those stress tests.

The present work interfaces with the literature on macroprudential regulation;

it shows how to design stress tests so that they are more macroprudential in nature,

rather than being strictly microprudential. Clement (2010) provides a history of the

term “macroprudential,” and how it has been used over time. “Macroprudential” is

traced back to 1979, in which it was mentioned at a meeting of the Cooke Commit-

tee, the predecessor of the Basel Committee on Banking Supervision. At the time,

“macroprudential” meant “an enhanced focus on the financial system as a whole

and its link to the macroeconomy.” Clark and Large (2011), Liebeg and Posch (2011),

and Claessens (2015) all provide a modern overview of macroprudential regulation

and its objectives. Macroprudential regulation is often concerned with risks at the

level of the financial system; it is distinguished from microprudential regulation,

which instead seeks to ensure the soundness of individual financial institutions

one at a time. Hanson et al. (2011), Kashyap et al. (2011), and Borchgrevink et al.

(2014) argue that macroprudential regulation arises out of a need to address market

failures. Pecuniary externalities, such as fire sales of assets, interconnectedness ex-

ternalities, and strategic complementarities all motivate macroprudential regulation

because the standard microprudential toolkit does not address these market failures.

Acharya (2009) discusses the role of capital requirements in a macroprudential

framework. Borio (2003), Greenlaw et al. (2012), and Williams (2015) acknowledge

that stress tests and current regulatory frameworks are still fairly microprudential

in nature. Williams (2015) argues that microprudential regulations and supervision

are unfortunately being used to attain macroprudential objectives due to the scarcity

of explicitly macroprudential tools. The present work shows how to substantially
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enhance the Federal Reserve’s existing stress testing approach to make it much more

macroprudential. The present work introduces classes of stress tests, which are

distinguished by their types of risks. Each individual stress test within a particular

class is then distinguished by the specific ways that these risks manifest themselves

within the financial system, whether these risks appear in certain assets or financial

institutions. Studying the different ways that risk can be distributed within the

financial system, and quantifying the corresponding effects on the financial system is

a fundamentally macroprudential perspective. Clement (2010) offers this perspective

when discussing the history of the term “macroprudential.”

Financial networks and their topologies form an important part of the present

work. The present work studies bipartite networks that link individual financial

institutions to individual assets; edges are directed from the financial institutions to

the assets in their portfolios, with the weight of each edge equal to the number of

units of the asset held by the financial institution. Institutions’ overlapping portfolios

here generate risk. As a result of the 2008 global financial crisis, there is quite a

large literature on financial networks. Caccioli et al. (2014) and Levy-Carciente

et al. (2015) study bipartite networks linking financial institutions to assets, and

Marotta et al. (2015) studies bipartite credit networks linking banks to firms. Gualdi

et al. (2016) examines portfolio overlap among financial institutions as a channel for

financial contagion. Now, a large part of the financial networks literature is focused

on counterparty networks and financial contagion. Allen and Babus (2009), Gai and

Kapadia (2010), Battiston et al. (2012), Elliott et al. (2014), and Acemoglu et al. (2015)

all study how the actual structure of the counterparty network shapes systemic

risk. Afonso et al. (2011) studies the impact of the global financial crisis on edge

weights in a counterparty network of financial institutions. Cont et al. (2013) tries

to determine the systemic importance of each financial institution in an interbank
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network. Zawadowski (2013) focuses on a counterparty network with bilateral

over-the-counter contracts, and Markose et al. (2012) focuses on the network of

credit default swaps within the United States at the time of the financial crisis. For

Farboodi (2014), the structure of the financial network is determined endogenously

as financial institutions make strategic borrowing and lending decisions. The present

work studies how the topologies of financial networks shape stress tests’ effects on

the financial system. The present work carries out this analysis for entire classes of

stress tests, not just individual stress tests.

In addition to interfacing with the overlapping literatures on stress testing,

macroprudential regulation, and financial networks, the present work contributes

to a new literature on networks and probability distributions in the economy.

Both Chapter 1 and Chapter 2 of this dissertation provide a foundation for this

literature. Chapter 1 develops a set of theoretical tools for mapping the topology of

an economic network to a probability distribution of possible outcomes. Chapter 1

adapts these tools to study locally formed macroeconomic sentiment and how

agents’ interaction structure shapes the capacity for there to exist non-fundamental

swings in aggregate macroeconomic sentiment; Chapter 1 thereby enhances our

understanding of animal spirits. Chapter 2 extends the set of theoretical tools

from Chapter 1 so that they have broader applicability. As in Chapter 1, Chapter 2

also maps naturally occurring networks in the economy to different probability

distributions of interest. Chapter 2, in particular, focuses on the effects that a given

policy has on a population’s aggregate action when agents are networked and the

actions that these agents take are interdependent. Chapter 2 therefore explicitly

shows, for any given policy targeting a certain number of networked agents, how

the topology of agents’ interaction network shapes the corresponding distribution of

possible aggregate actions and the corresponding distribution of possible economic
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multipliers. The present work makes additional methodological and technical

advances relative to Chapter 1 and Chapter 2; it further expands the set of tools

for mapping networks to probability distributions. The present work studies how

the topologies of bipartite networks linking financial institutions to assets shape

stress tests’ effects on the financial system. Given a particular class of stress tests,

the present work shows how to map the topology of the bipartite network to a

probability distribution capturing balance sheet effects.

3.1.2 Outline of Chapter

We begin Section 3.2 by introducing notation and definitions. We next consider

stress tests that directly shock the portfolios of financial institutions. While we are

indeed interested in each stress test’s effects on the balance sheets of individual

financial institutions and the financial system as a whole, we would like to drastically

increase the number of such tests to more rigorously stress the financial system.

In this section, we therefore show how to drastically increase the total number of

stress tests without increasing the computational burden. We generate classes of

stress tests, and for each class, we construct a probability distribution capturing

possible balance sheet effects for each individual financial institution, and we

construct a probability distribution capturing possible aggregate balance sheet

effects for the entire financial system. In the United States, these shocks to financial

institutions’ portfolios generally constitute the global market shock component of the

Federal Reserve’s stress tests, and they can also constitute the macroeconomic

component. We conclude in Section 3.3.
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3.2 Classes of Stress Tests and Probability Distribu-

tions of Balance Sheet Effects

3.2.1 Notation and Definitions

The cardinality of a set X is |X |. A multiset is an object similar to a set, but it

allows for multiple instances of each of its elements. Vector x is a column vector

by default. The ith element of vector x is [x]i. The ijth element of matrix X is [X]ij,

the ith row of X is [X]i⇤, and the jth column of X is [X]⇤j. The column vector whose

elements all equal 1 is 1. The Hadamard product of matrices X and Y, X � Y, is their
element-wise multiplication: [X � Y]ij = [X]ij [Y]ij. For permutation matrix P, PX

permutes the rows of X and XP permutes the columns of X. The ⇤ operator denotes

the convolution of two probability distributions. Z is the set of all integers.

3.2.2 Theoretical Framework

The Federal Reserve’s stress tests shock the portfolios of financial institutions

through multiple conduits. Each stress test includes multiple categories of risk,

including sovereign risk, exchange rate risk, and industry risk. We can take these

categories of risk as key parts of economic and financial downturns, and we can

examine all of the different ways that these categories of risk manifest themselves

within the broader economy and financial system.

These different types of risk affect the values of assets; for instance, they

change the prices of assets and they alter income streams. We are interested in

stress tests’ effects on balance sheet items for individual financial institutions and

the financial system as a whole, that is, the collection of financial institutions that

comprise the financial system. In this section, we focus on stress tests’ effects on the
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market value of institutions’ net assets. Specifically, the market value of a financial

institution’s net assets is equal to the market value of its assets minus the market

value of its liabilities. Assets and liabilities for each financial institution are marked

to market. A separate balance sheet item that we could instead look at is net income

before taxes. Net income takes into account unrealized and realized gains and losses

for securities, so net assets is a reasonable balance sheet item to examine.

There are M financial institutions indexed 1, . . . ,M and N total securities

indexed 1, . . . ,N. Each security in a financial institution’s portfolio is either an asset

or a liability. Define the M ⇥ N matrix A. The ijth element of A is equal to the

number of units of security j held in the portfolio of financial institution i. Each

row of A represents a financial institution’s portfolio. The elements of A can be

positive, zero, or negative. [A]ij = 0 means that institution i does not have security j

in its portfolio, [A]ij > 0 means that security j is one of institution i’s assets, and

[A]ij < 0 means that security j is one of institution i’s liabilities. The extent to which

the rows of A are similar determines the extent to which the portfolios of different

financial institutions are overlapping. It determines the extent to which the financial

system exhibits systematic risk. Define p as the N ⇥ 1 vector of securities prices.

The market value of institution i’s net assets is [A]i⇤ p. The market value of net

assets for the entire financial system is 1TAp.

In the background, we have this bipartite network linking financial institu-

tions to securities. The weight of each directed edge is equal to the number of units

of a particular security in the corresponding financial institution’s portfolio. We are

interested in how the topology of this bipartite network shapes stress tests’ effects

on individual financial institutions and the overall financial system.

We want to know how a stress test changes each individual institution’s net

assets and the net assets for the financial system. In the Federal Reserve’s current
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stress testing approach, a stress test features shocks that cause certain securities’

prices to change; we then quantify the overall effect. In the present work, we

would like to massively increase the number of annual stress tests being conducted

without increasing the computational burden. Therefore, rather than identifying

individual stress tests, we identify classes of stress tests. Each class of stress tests is

distinguished by its categories of risk. Categories of risk, for example, can include

a certain form of exchange rate risk, a certain form of sovereign debt risk, and a

certain form of industry risk, all of which affect securities prices. Different classes

of stress tests differ in at least one category of risk. Since each category of risk can

manifest itself in different ways (for instance, exchange rate risk can manifest itself in

different types of currencies), a given class of stress tests can contain many different

individual stress tests. The individual stress tests within a particular class account

for all of the possible ways that the categories of risk can manifest themselves.

When we consider just one stress test, we have one data point that captures

the resulting level of net assets for each individual financial institution, and we have

one data point that captures the resulting level of net assets for the whole financial

system. In the present work, when we instead consider one class of stress tests, we

have a probability distribution that captures possible resulting levels of net assets

for each individual financial institution, and we have a probability distribution that

captures possible resulting levels of net assets for the whole financial system. In this

work, we are moving from data points to entire probability distributions.

To compute how a class of stress tests affects individual institutions’ net

assets and aggregate net assets, we take the following approach. A class of stress

tests features one or more categories of risk. We separately consider each category

of risk. For each category of risk, we construct a probability distribution of possible

changes in net assets for each individual financial institution, and we construct a
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probability distribution of possible changes in aggregate net assets for the overall

financial system. For each individual financial institution, we then convolve the

relevant risk category-specific probability distributions, and the resulting probability

distribution captures possible changes in net assets for that class of stress tests

with its multiple categories of risk. Similarly, for the overall financial system,

we convolve the relevant risk category-specific probability distributions, and the

resulting probability distribution captures possible changes in net assets for the

entire financial system given that particular class of stress tests with its multiple

categories of risk.

We start here by focusing on individual categories of risk. For each category

of risk, we select the relevant set of affected securities from the full set of securities,

and we cluster the affected securities into various groups as needed. From the

original matrix A and the original price vector p, we therefore generate a new

matrix Ā and a new vector p̄. In general, matrix Ā captures financial institutions’

portfolio holdings for the affected securities, with securities clustered as needed, and

vector p̄ captures the initial values of these securities clusters. The price vector p̄ can

potentially differ for each financial institution and for the overall financial system;

when that occurs, we define p̄i as the price vector for financial institution i, and we

define p̄agg as the price vector for the overall financial system. We then introduce the

vector wi = ([Ā]i⇤)
T of risk category-relevant portfolio holdings for each individual

financial institution i 2 {1, . . . ,M}, and we similarly construct a vector wagg of risk

category-relevant portfolio holdings for the entire financial system. We will use wi

and wagg to respectively compute the effects of a category of risk on net assets for

financial institution i and for the overall financial system.

The next three examples illustrate how to construct Ā, p̄ (or p̄i and p̄agg

as needed), wi for all i 2 {1, . . . ,M}, and wagg from A and p given a particular
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category of risk:

Example 3.1 Suppose that the category of risk is credit risk. Specifically, forty percent of

all unique AAA-rated mortgage-backed securities have been downgraded to a CCC rating.

As a result, the price of each affected mortgage-backed security has declined 80 percent from

its original level. How do we construct Ā, wi for all i 2 {1, . . . ,M}, wagg, and p̄?

We start with the M⇥N matrix A, and we identify the indices j 2 {1, . . . ,N}
of AAA-rated mortgage-backed securities. There are L such unique securities.

We consider two mortgage-backed securities to be the same, and therefore not

unique, if they happen to be identically formed from the same underlying pool

of mortgages; it is therefore possible for a financial institution to hold more than

one unit of a particular AAA-rated mortgage-backed security. We construct the

M⇥ L matrix Ā by extracting the relevant columns of AAA-rated mortgage-backed

security portfolio holdings from the matrix A. We set wi = ([Ā]i⇤)
T as the updated

relevant portfolio vector for financial institution i, and we set wagg = ĀT1 as the

updated relevant portfolio vector for the overall financial system. Meanwhile, we

construct the L ⇥ 1 price vector p̄, whose elements are the prices of AAA-rated

mortgage-backed securities. Quantity wT
i p̄ is the initial value of the AAA-rated

mortgage-backed security portfolio for financial institution i, and wT
aggp̄ is the initial

value of the AAA-rated mortgage-backed security portfolio for the entire financial

system. We define e as the L⇥ 1 vector capturing potential changes to the prices

of these mortgage-backed securities. We have [e]` = �0.80 for forty percent of

all unique AAA-rated mortgage-backed securities and we have [e]` = 0 for sixty

percent of all unique AAA-rated mortgage-backed securities. There are ( L
0.4L) such

vectors e, for each vector e identifies the indices of a different subset of AAA-rated

mortgage-backed securities getting an 80-percent reduction in price. The value of the
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AAA-rated mortgage-backed security portfolio for financial institution i following a

specific e-shock is: wT
i (p̄+ e � p̄). The value of the AAA-rated mortgage-backed

security portfolio for the entire financial system following a specific e-shock is:

wT
agg (p̄+ e � p̄).

Example 3.2 Suppose that the category of risk is exchange rate risk. Specifically, one foreign

currency depreciates by 15 percent relative to the U.S. dollar. The market value of net assets

for each financial institution is priced in U.S. dollars. How do we construct Ā, wi for all

i 2 {1, . . . ,M}, wagg, p̄i for all i 2 {1, . . . ,M}, and p̄agg?

Suppose that there are L total foreign currencies, indexed by j 2 {1, . . . , L}.
We therefore construct an M ⇥ L matrix Ā. Element ij of matrix Ā equals 0 if

financial institution i does not hold any assets or liabilities denominated in foreign

currency j; otherwise, element ij of matrix Ā equals 1. We set wi = ([Ā]i⇤)
T as the

updated relevant portfolio vector for financial institution i. Similarly, we introduce

wagg as the updated relevant portfolio vector for the entire financial system. We

set
⇥

wagg
⇤

j = 0 if the overall financial system does not hold any assets or liabilities

denominated in foreign currency j; otherwise, we set
⇥

wagg
⇤

j = 1. We next construct

p̄i and p̄agg. Element [p̄i]j is equal to the initial market value, in U.S. dollars, of

net assets denominated in foreign currency j for financial institution i. Specifically,

define K ✓ {1, . . . ,N} as the set of indices for securities denominated in foreign

currency j. Then, [p̄i]j = Âk2K [A]ik [p]k. Quantity wT
i p̄i is the initial market value,

in U.S. dollars, of all net assets denominated in foreign currencies for financial

institution i. Meanwhile, element
⇥

p̄agg
⇤

j is equal to the initial market value, in

U.S. dollars, of net assets denominated in foreign currency j for the entire financial

system. We therefore set
⇥

p̄agg
⇤

j = Âk2K
⇥

1TA
⇤

k [p]k. Quantity wT
aggp̄agg is the initial

market value, in U.S. dollars, of all net assets denominated in foreign currencies
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for the entire financial system. We define e as the L⇥ 1 vector capturing potential

changes to the U.S-dollar prices of foreign securities following the exchange rate

shock. We set [e]` = �0.15 for the one foreign currency ` facing a 15-percent

depreciation relative to the U.S. dollar, and for all r 6= `, we set [e]r = 0. There

are L such vectors e, where each vector e identifies a different foreign currency

depreciating relative to the U.S. dollar. The value, in U.S. dollars, of all net assets

denominated in foreign currencies for financial institution i following a specific

e-shock is: wT
i (p̄i + e � p̄i). The value, in U.S. dollars, of all net assets denominated

in foreign currencies for the overall financial system following a specific e-shock is:

wT
agg
�

p̄agg + e � p̄agg
�

.

Example 3.3 Suppose that the category of risk is industry risk. Specifically, the prices

of securities in one industry decline by 20 percent, the prices of securities in another

industry decline by 10 percent, and the prices of securities in a third industry increase by 12

percent. Securities have been issued for every industry. How do we construct Ā, wi for all

i 2 {1, . . . ,M}, wagg, p̄i for all i 2 {1, . . . ,M}, and p̄agg?

Suppose that there are L total industries, with each industry indexed by

j 2 {1, . . . , L}. We therefore construct an M ⇥ L matrix Ā. Element ij of matrix

Ā equals 0 if financial institution i does not hold any assets or liabilities from

industry j; otherwise, element ij of matrix Ā equals 1. We set wi = ([Ā]i⇤)
T as the

updated relevant portfolio vector for financial institution i. Now, every security

from industry j is held by some financial institution in the financial system, so

wagg = 1L⇥1 is the updated relevant portfolio vector for the overall financial system.

We next construct p̄i and p̄agg. Element [p̄i]j is equal to the initial market value of net

assets in industry j for financial institution i. Specifically, define K ✓ {1, . . . ,N} as

the set of indices for securities in industry j. Then, [p̄i]j = Âk2K [A]ik [p]k. Quantity
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wT
i p̄i is the initial market value of net assets for financial institution i. Meanwhile,

element
⇥

p̄agg
⇤

j is equal to the initial market value of net assets in industry j for

the entire financial system. We therefore set
⇥

p̄agg
⇤

j = Âk2K
⇥

1TA
⇤

k [p]k. Quantity

wT
aggp̄agg is the initial market value of net assets for the entire financial system. We

define e as the L⇥ 1 vector capturing potential changes to the prices of securities for

different industries. We set [e]` = �0.20 for one industry `, we set [e]r = �0.10 for

a second industry r, and we set [e]s = 0.12 for a third industry s. There are L!
(L�3)!

such distinct vectors e. The market value of net assets for financial institution i

following a specific e-shock is: wT
i (p̄i + e � p̄i). The market value of net assets for

the entire financial system following a specific e-shock is: wT
agg
�

p̄agg + e � p̄agg
�

.

The previous three examples consider three different categories of risk. Cat-

egories of risk can differ in the manner by which they affect securities prices. I

therefore map each category of risk to one of four possible risk environments. These

four risk environments collectively represent all of the possible ways that categories

of risk can shock securities prices. We now proceed to show, within each risk

environment, how to compute the distribution of possible changes to net assets

for each individual financial institution and how to compute the distribution of

possible changes to net assets for the overall financial system. By developing this

set of mathematics for each individual risk environment, we are able to compute

distributions of possible changes in net assets for individual financial institutions

and the overall financial system for all of the categories of risk that map to that

particular risk environment.
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3.2.3 First Risk Environment: Absolute Price Shocks, Same Across

Securities Clusters

We begin by describing and analyzing the first way that a category of risk can

change the market value of net assets. We assume that ` 2 {1, . . . , L} clusters of

securities experience a shock d to their overall value. If each cluster only contains

one security, then ` 2 {1, . . . , L} securities are individually experiencing a price

shock d. d < 0 represents a negative shock to price and/or value, while d > 0

represents a positive shock.7 For example, let’s suppose that the first ` clusters of

securities are experiencing a shock d. Then, the change in net assets for financial

institution i is wT
i e, and the aggregate change in net assets is wT

agge, where wi is

the L⇥ 1 updated relevant portfolio vector for financial institution i, wagg is the

L⇥ 1 updated relevant portfolio vector for the overall financial system, [e]j = d for

j 2 {1, . . . , L} and [e]j = 0 for j 2 {`+ 1, . . . , L}. The vector e that we just defined

is capturing one way that the d-shocks can manifest themselves. There are many

more possible vectors e ⌘ e (L, `) for which ` clusters receive a d-shock and the

remaining L� ` clusters receive a shock of zero. E (L, `) is the entire set of such

vectors; the cardinality of E (L, `) is (L`). e (L, `) 2 E (L, `) and e0 (L, `) 2 E (L, `) are

distinguished by the indices of the ` clusters receiving a d-shock.

Given this first risk environment, in which ` clusters of securities have re-

ceived a d-shock, we would like to construct the probability distribution of possible

changes in the market value of net assets for financial institution i, 8i 2 {1, . . . ,M},
and we would like to construct the probability distribution of possible changes

in the market value of net assets for the overall financial system. To compute

7We assume that, when d < 0, the magnitude of d is small enough that securities prices remain
non-negative following the d-shock.
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these probability distributions and solve for their statistical features, we intro-

duce additional notation. We define pi (wi, e, L, `) = wT
i e (L, `) as the change

in net assets for institution i for a given configuration of shocks e (L, `). We de-

fine pagg
�

wagg, e, L, `
�

= wT
agge (L, `) as the change in net assets for the entire

financial system for a given configuration of shocks e (L, `). Random variable

Pi (wi, L, `) has a configuration-specific realization pi (wi, e, L, `), and random vari-

able Pagg
�

wagg, L, `
�

has a configuration-specific realization pagg
�

wagg, e, L, `
�

. We

assume that each configuration of shocks among the L clusters of securities is

equally likely. Accordingly, corresponding to random variable Pi (wi, L, `) is the

CDF

GPi(wi,L,`) (t) =
1

|E (L, `)| Â
e(L,`)2E(L,`)

1
pi(wi,e,L,`)t

with PMF gPi(wi,L,`) (t), and corresponding to random variable Pagg
�

wagg, L, `
�

is

CDF

GPagg(wagg,L,`) (t) =
1

|E (L, `)| Â
e(L,`)2E(L,`)

1
pagg(wagg,e,L,`)t

with PMF gPagg(wagg,L,`) (t). We define random variable Wi with realization [wi]j,

and we define random variable Wagg with realization
⇥

wagg
⇤

j. We assume that each

realization is equally likely. The elements [wi]j and
⇥

wagg
⇤

j are not themselves

random; the elements in the vectors wi and wagg are indeed entirely fixed. We

simply introduce random variables Wagg and Wi to make certain mathematical

expressions more compact. We also set 1Twi = ki, and we set 1Twagg = kagg.

We can now solve for the statistical features of Pi (wi, L, `) and

Pagg
�

wagg, L, `
�

. The next proposition characterizes their first moments:

Proposition 3.1 The average change in net assets for financial institution i is:

EPi (wi, L, `) =
ki`
L

d,
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and the average change in net assets for the financial system is:

EPagg
�

wagg, L, `
�

=
kagg`
L

d.

The variances of the distributions capturing possible changes in net assets are as

follows:

Proposition 3.2 The change in net assets for financial institution i has a variance of:

VarPi (wi, L, `) = d

2 `
L

✓

1� `
L

◆

L
L� 1

LVarWi,

and the change in net assets for the entire financial system has a variance of:

VarPagg
�

wagg, L, `
�

= d

2 `
L

✓

1� `
L

◆

L
L� 1

LVarWagg.

Specifically, VarWi =
1
L ÂL

j=1

⇣

[wi]j � ki
L

⌘2
and VarWagg = 1

L ÂL
j=1

⇣

⇥

wagg
⇤

j �
kagg
L

⌘2

are population variances.

We can additionally compute the lower and upper bounds on the supports of

these distributions. These bounds tell us the range of possible changes in the market

value of net assets for individual financial institutions and the overall financial

system given that ` clusters experience a d-shock:

Proposition 3.3 Construct the ordered multiset
�

w̃j
 L
j=1 from the elements of wi so that

w̃j  w̃j0 whenever j  j0. When d < 0, the lower and upper bounds on the distribution of

possible changes to net assets for institution i are:

min suppPi (wi, L, `) = d

L

Â
j=L�`+1

w̃j and

max suppPi (wi, L, `) = d

`

Â
j=1

w̃j.

Now construct the ordered multiset
�

x̃j
 L
j=1 from the elements of wagg so that x̃j  x̃j0

whenever j  j0. When d < 0, the lower and upper bounds on the distribution of possible
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changes to net assets for the financial system are:

min suppPagg
�

wagg, L, `
�

= d

L

Â
j=L�`+1

x̃j and

max suppPagg
�

wagg, L, `
�

= d

`

Â
j=1

x̃j.

We also want to construct asymptotic expansions that approximate the distri-

bution of possible changes in net assets for financial institution i, 8i 2 {1, . . . ,M}
and the distribution of possible changes in net assets for the overall financial system.

In particular, we are interested in approximating GPi(wi,L,`) (t) for all i 2 {1, . . . ,M}
and GPagg(wagg,L,`) (t). We first introduce the function J (bw, L, `, t):

J (bw, L, `, t) = F (t)�H2 (t) f (t)C1

L

Â
j=1
bw3
j �H3 (t) f (t)

"

C2

 

L

Â
j=1
bw4
j �

3
L

!

� 1
4L

#

� H5 (t) f (t)C3

 

L

Â
j=1
bw3
j

!2

,

where C1 =
1� 2`

L

6( `
L(1� `

L))
1/2 , C2 =

1�6( `
L)(1� `

L)
24( `

L)(1� `
L)

, C3 =
(1� 2`

L )
2

72( `
L)(1� `

L)
, f (t) = F0 (t) =

1p
2p

e� t2
2 , and Hj (t) f (t) = (�1)j dj

dtj f (t). When we are interested in approximating

GPi(wi,L,`) (t), we set bwj =
[wi]j�EWip

LVarWi
. When we are instead interested in approximat-

ing GPagg(wagg,L,`) (t), we set bwj =
[wagg]j�EWaggp

LVarWagg
.

Proposition 3.4 Provided that condition (c) holds, for all i 2 {1, . . . ,M},
�

�

�

�

�

�

GPi(wi ,L,`)�EPi(wi ,L,`)

(VarPi(wi ,L,`))
1/2

(t)� J (bw, L, `, t)

�

�

�

�

�

�

< C4 ⇥
L

Â
j=1

�

�

bwj
�

�

5

with bwj =
[wi]j�EWip

LVarWi
, and

�

�

�

�

�

�

GPagg(wagg ,L,`)�EPagg(wagg ,L,`)

(VarPagg(wagg ,L,`))1/2
(t)� J (bw, L, `, t)

�

�

�

�

�

�

< C4 ⇥
L

Â
j=1

�

�

bwj
�

�

5
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with bwj =
[wagg]j�EWaggp

LVarWagg
for all t, where C4 is only a function of `

L .

Condition (c) (Robinson (1978)) Given C0 > 0, there exist h > 0, C > 0, and

k > 0 not depending on L such that, for any fixed t, the number of indices j, for

which
�

�

bwjx� t� 2brp
�

� > h, for all x 2
✓

C0 [maxi | bwi|]�1 ,C
h

ÂL
i=1 | bwi|5

i�1
◆

and all

br = 0,±1,±2, . . ., is greater than kL, for all L.

Condition (c) requires that the elements of bw not be clustered over too few values.

Accordingly, condition (c) requires that the elements of wi for each i 2 {1, . . . ,M}
and wagg not be clustered over too few values. Given Proposition 3.4, we have that

GPi(wi,L,`) (t) ⇡ J

 

bw, L, `,
t� EPi (wi, L, `)

(VarPi (wi, L, `))
1/2

!

8i 2 {1, . . . ,M}

with bwj =
[wi]j�EWip

LVarWi
, and

GPagg(wagg,L,`) (t) ⇡ J

 

bw, L, `,
t� EPagg

�

wagg, L, `
�

�

VarPagg
�

wagg, L, `
��1/2

!

with bwj =
[wagg]j�EWaggp

LVarWagg
. For each individual financial institution, note that ÂL

j=1 bw3
j =

L�1/2 SkewWi and ÂL
j=1 bw4

j � 3
L = L�1 ⇥ (Excess KurtosisWi). For the overall fi-

nancial system, note that ÂL
j=1 bw3

j = L�1/2 SkewWagg and ÂL
j=1 bw4

j � 3
L = L�1 ⇥

�

Excess KurtosisWagg
�

. We can therefore approximate GPi(wi,L,`) (t) and

GPagg(wagg,L,`) (t) in terms of the population moments of Wi and Wagg, respectively.

The asymptotic expansion J (bw, L, `, t) is to order 1/L.

When ` = 1, we can solve for GPi(wi,L,`) (t), 8i 2 {1, . . . ,M}, and
GPagg(wagg,L,`) (t) exactly. Observe that when ` = 1, Pi (wi, L, `) = dWi and

Pagg
�

wagg, L, `
�

= dWagg, so

GPi(wi,L,`) (t) = Pr [Pi (wi, L, `)  t] = Pr [dWi  t] = GWi

✓

t
d

◆

8i 2 {1, . . . ,M} ,
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and

GPagg(wagg,L,`) (t) = Pr
⇥

Pagg
�

wagg, L, `
�  t

⇤

= Pr
⇥

dWagg  t
⇤

= GWagg

✓

t
d

◆

.

Example 3.4 Suppose that the category of risk is sovereign risk. Specifically, one country

has a writedown of its sovereign debt, which causes the price of each sovereign bond for

that country to decrease 10 dollars. We are interested in the possible changes in net assets

for each individual financial institution i, 8i 2 {1, . . . ,M}, and we are interested in the

possible changes in net assets for the overall financial system.

We would like to compute the statistical features of Pi (wi, L, `), 8i 2
{1, . . . ,M}, which captures the possible changes in net assets for each individ-

ual financial institution i. We would also like to compute the statistical features

of Pagg
�

wagg, L, `
�

, which captures possible changes in net assets for the overall

financial system. We are additionally interested in constructing the probability

distributions GPi(wi,L,`) (t), 8i 2 {1, . . . ,M}, and GPagg(wagg,L,`) (t). We therefore

proceed to solve for all of the necessary variables. There are L total countries,

indexed by j 2 {1, . . . , L}, that have issued sovereign bonds. We introduce wi as

the relevant portfolio vector for financial institution i, and we introduce wagg as the

relevant portfolio vector for the overall financial system. We set [wi]j equal to the

number of sovereign bonds from country j held by financial institution i, and we

set
⇥

wagg
⇤

j equal to the total number of sovereign bonds from country j held by all

M financial institutions in the financial system. We now construct the L⇥ 1 price

vector p̄. [p̄]j is equal to the dollar price of a country-j sovereign bond prior to a

potential writedown of debt. With one country writing down its debt, ` = 1. The

price shock is d = �10. The vector e (L, `) identifies the one country writing down

its debt. We set [e (L, `)]j = �10 if country j is writing down its sovereign debt, and

otherwise we set [e (L, `)]j = 0. There are L possible vectors e (L, `) in E (L, `), with
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each vector e (L, `) identifying a different country that is having a writedown of

its sovereign debt. For a given configuration of shocks e (L, `), the change in net

assets for institution i is pi (wi, e, L, `) = wT
i e (L, `), and the change in net assets

for the entire financial system is pagg
�

wagg, e, L, `
�

= wT
agge (L, `). Since ` = 1,

GPi(wi,L,`) (t) = GWi

� t
d

�

exactly, 8i 2 {1, . . . ,M}, and GPagg(wagg,L,`) (t) = GWagg

� t
d

�

exactly.

3.2.4 Second Risk Environment: Percentage Price Shocks, Same

Across Securities Clusters

In this second environment, any given category of risk affects securities prices in

the following manner. We have L total clusters of securities, and the category of

risk stresses ` 2 {1, . . . , L} clusters of securities. In particular, stressed clusters of

securities experience the same percentage adjustment to their market values, while

non-stressed clusters of securities experience zero adjustment to their market values.

We denote bd as that percentage adjustment to a stressed cluster’s market value, or

equivalently, that cluster’s securities prices; bd < 0 means that there is a negative

shock to the cluster’s securities prices, while bd > 0 means that there is a positive

shock to the cluster’s securities prices. We introduce the L⇥ 1 vector e (L, `) to

capture price shocks to securities clusters. [e (L, `)]j = b

d if cluster j is stressed,

and otherwise [e (L, `)]j = 0; with there being ` total stressed clusters, we must

have 1Te (L, `) = b

d`. We also introduce the L⇥ 1 price vector p̄. If each cluster

of securities j contains only one type of security, 8j 2 {1, . . . , L}, then we set [p̄]j

equal to the initial price of the security in that cluster. However, if at least one

cluster contains more than one type of security, then for all j 2 {1, . . . , L}, we set

[p̄]j equal to the initial market value of the collection of securities in cluster j. For
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a given configuration of percentage price shocks e (L, `), the change in the market

value of net assets for financial institution i is pi (wi, e, L, `) = wT
i (e (L, `) � p̄),

8i 2 {1, . . . ,M}, and the change in the market value of net assets for the overall

financial system is pagg
�

wagg, e, L, `
�

= wT
agg (e (L, `) � p̄).

There are many possible configurations of percentage price shocks among

the L clusters of securities. Each configuration is distinguished by the particular

subset of clusters receiving a percentage price shock. E (L, `) is the set of all possi-

ble configurations of percentage price shocks given that ` clusters experience a bd

percentage-price shock, and L� ` clusters experience zero price shock. The cardinal-

ity of the set E (L, `) is combinatorial: |E (L, `)| = (L`). We are interested in character-

izing the statistical properties of the random variable Pi (wi, L, `), 8i 2 {1, . . . ,M},
whose realizations are pi (wi, e, L, `), and we are interested in characterizing the

statistical properties of the random variable Pagg
�

wagg, L, `
�

, whose realizations

are pagg
�

wagg, e, L, `
�

. Pi (wi, L, `) and Pagg
�

wagg, L, `
�

respectively represent the

possible changes in net assets for financial institution i and the overall financial

system given that ` clusters of securities experience a bd percentage price shock. We

would also like to approximate the CDFs GPi(wi,L,`) (t) and GPagg(wagg,L,`) (t).

To construct these probability distributions and solve for their statistical

features, we need to rewrite certain expressions of interest. Define the L⇥ 1 vector

b (L, `), with [b (L, `)]j = 1 if [e (L, `)]j = b

d and [b (L, `)]j = 0 if [e (L, `)]j = 0. The

vector b (L, `) identifies the indices of those clusters being stressed. Additionally,

define the vectors vi, 8i 2 {1, . . . ,M}, and vagg:

vi =
✓

[wi]1
[wi]2[p̄]2

[p̄]1
· · · [wi]L[p̄]L

[p̄]1

◆T
, and

vagg =
✓

⇥

wagg
⇤

1
[wagg]2[p̄]2

[p̄]1
· · · [wagg]L[p̄]L

[p̄]1

◆T
.
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We then establish the following lemma:

Lemma 3.1 Given the configuration e (L, `) of percentage price shocks, the change in the

market value of net assets for financial institution i is:

wT
i (e (L, `) � p̄) =

⇣

b

d [p̄]1
⌘

vTi b (L, `) ,

8i 2 {1, . . . ,M}, and the change in the market value of net assets for the entire financial

system is:

wT
agg (e (L, `) � p̄) =

⇣

b

d [p̄]1
⌘

vTaggb (L, `) .

We set ki = 1Tvi, 8i 2 {1, . . . ,M}, and we set kagg = 1Tvagg. In addition, we

define random variable Vi with realization [vi]j, and we define random variable

Vagg with realization
⇥

vagg
⇤

j. Each realization is equally likely. We can now solve,

in closed form, for the statistical features of Pi (wi, L, `) and Pagg
�

wagg, L, `
�

. We

have the following results:

Proposition 3.5 The average change in net assets for financial institution i is:

EPi (wi, L, `) =
ki`
L
b

d [p̄]1 ,

and the average change in net assets for the financial system is:

EPagg
�

wagg, L, `
�

=
kagg`
L

b

d [p̄]1

Proposition 3.6 The change in net assets for financial institution i has a variance of:

VarPi (wi, L, `) =
⇣

b

d [p̄]1
⌘2 `

L

✓

1� `
L

◆

L
L� 1

LVarVi,

and the change in net assets for the entire financial system has a variance of:

VarPagg
�

wagg, L, `
�

=
⇣

b

d [p̄]1
⌘2 `

L

✓

1� `
L

◆

L
L� 1

LVarVagg.
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Specifically, VarVi =
1
L ÂL

j=1

⇣

[vi]j � ki
L

⌘2
and VarVagg = 1

L ÂL
j=1

⇣

⇥

vagg
⇤

j �
kagg
L

⌘2
.

Proposition 3.7 Construct the ordered multiset
�

ṽj
 L
j=1 from the elements of vi so that

ṽj  ṽj0 whenever j  j0. When bd < 0, the lower and upper bounds on the distribution of

possible changes to net assets for financial institution i are:

min suppPi (wi, L, `) = b

d [p̄]1
L

Â
j=L�`+1

ṽj and

max suppPi (wi, L, `) = b

d [p̄]1
`

Â
j=1

ṽj.

Now construct the ordered multiset
�

x̃j
 L
j=1 from the elements of vagg so that x̃j  x̃j0

whenever j  j0. When bd < 0, the lower and upper bounds on the distribution of possible

changes to net assets for the overall financial system are:

min suppPagg
�

wagg, L, `
�

= b

d [p̄]1
L

Â
j=L�`+1

x̃j and

max suppPagg
�

wagg, L, `
�

= b

d [p̄]1
`

Â
j=1

x̃j.

Proposition 3.8 Provided that condition (c) holds, for all i 2 {1, . . . ,M},
�

�

�

�

�

�

GPi(wi ,L,`)�EPi(wi ,L,`)

(VarPi(wi ,L,`))
1/2

(t)� J (bw, L, `, t)

�

�

�

�

�

�

< C4 ⇥
L

Â
j=1

�

�

bwj
�

�

5

with bwj =
[vi]j�EVip
LVarVi

, and

�

�

�

�

�

�

GPagg(wagg ,L,`)�EPagg(wagg ,L,`)

(VarPagg(wagg ,L,`))1/2
(t)� J (bw, L, `, t)

�

�

�

�

�

�

< C4 ⇥
L

Â
j=1

�

�

bwj
�

�

5

with bwj =
[vagg]j�EVaggp

LVarVagg
for all t, where C4 is only a function of `

L .

Condition (c) requires that the elements of vi, for all i 2 {1, . . . ,M}, and the elements
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of vagg not be clustered over too few values. Given Proposition 3.8, we have that

GPi(wi,L,`) (t) ⇡ J

 

bw, L, `,
t� EPi (wi, L, `)

(VarPi (wi, L, `))
1/2

!

, 8i 2 {1, . . . ,M} ,

with bwj =
[vi]j�EVip
LVarVi

, and

GPagg(wagg,L,`) (t) ⇡ J

 

bw, L, `,
t� EPagg

�

wagg, L, `
�

�

VarPagg
�

wagg, L, `
��1/2

!

,

with bwj =
[vagg]j�EVaggp

LVarVagg
. For each individual financial institution, note that ÂL

j=1 bw3
j =

L�1/2 SkewVi and ÂL
j=1 bw4

i � 3
L = L�1 ⇥ (Excess KurtosisVi). For the overall fi-

nancial system, note that ÂL
j=1 bw3

j = L�1/2 SkewVagg and ÂL
j=1 bw4

i � 3
L = L�1 ⇥

�

Excess KurtosisVagg
�

. We can therefore approximate the CDFs GPi(wi,L,`) (t) and

GPagg(wagg,L,`) (t) respectively in terms of the population moments of Vi and Vagg.

The asymptotic expansion J (bw, L, `, t) is to order 1/L.

When ` = 1, we can solve for GPi(wi,L,`) (t), 8i 2 {1, . . . ,M}, and
GPagg(wagg,L,`) (t) exactly. When ` = 1, Pi (wi, L, `) = b

d [p̄]1Vi and Pagg
�

wagg, L, `
�

= b

d [p̄]1Vagg, so GPi(wi,L,`) (t) = GVi

✓

t
b

d[p̄]1

◆

and GPagg(wagg,L,`) (t) = GVagg

✓

t
b

d[p̄]1

◆

.

Example 3.5 Suppose that the category of risk is exchange rate risk. Specifically, one

foreign currency depreciates by 15 percent relative to the U.S. dollar. The market value of

net assets for each financial institution is priced in U.S. dollars. We are interested in the

possible changes in net assets for each individual financial institution i, 8i 2 {1, . . . ,M},
and we are interested in the possible changes in net assets for the overall financial system.

We would like to compute the statistical features of Pi (wi, L, `), 8i 2
{1, . . . ,M}, which captures the possible changes in net assets for each individ-

ual financial institution i. We would also like to compute the statistical features of

Pagg
�

wagg, L, `
�

, which captures the possible changes in net assets for the overall
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financial system. We are additionally interested in constructing the probability distri-

butions GPi(wi,L,`) (t), 8i 2 {1, . . . ,M}, and GPagg(wagg,L,`) (t). We therefore proceed

to solve for all of the necessary variables. There are L total foreign currencies,

indexed by j 2 {1, . . . , L}. We introduce wi as the L⇥ 1 relevant portfolio vector

for financial institution i, and we introduce wagg as the L ⇥ 1 relevant portfolio

vector for the overall financial system. We also introduce p̄i as the L⇥ 1 relevant

price vector for financial institution i, and we introduce p̄agg as the relevant price

vector for the overall financial system. We construct wi, 8i 2 {1, . . . ,M}, wagg,

p̄i, 8i 2 {1, . . . ,M}, and p̄agg by following Example 3.2. We then construct vi,

8i 2 {1, . . . ,M}, from the vectors wi and p̄i, and we construct vagg from the vectors

wagg and p̄agg. With one foreign currency depreciating by 15 percent relative to the

U.S. dollar, ` = 1 and bd = �0.15.8 We construct e (L, `) by setting [e (L, `)]j = �0.15

for one foreign currency j, and we set [e (L, `)]r = 0 for all other r 6= j. The set of all

possible configurations of exchange rate shocks is E (L, `), with |E (L, `)| = L. Each

possible configuration features a different foreign currency experiencing a 15-percent

depreciation. Given an exchange rate shock e (L, `), the change in net assets for

financial institution i is pi (wi, e, L, `) =
⇣

b

d [p̄i]1

⌘

vTi b (L, `), and the change in net

8To demonstrate why we set bd = �0.15, see the following proof: Define the exchange rate E (q)
$/F

as the number of U.S. dollars per unit of foreign currency in time period q; time period 0 precedes
depreciation and time period 1 immediately follows depreciation. Also define P(q)

F as the period-q
price of a foreign security denominated in foreign currency, and define P(q)

$ as the period-q price of a
foreign security denominated in U.S. dollars. With

E (1)
$/F � E (0)

$/F

E (0)
$/F

= �0.15,

so that E (1)
$/F = E (0)

$/F ⇥ (1� 0.15), we then have

P(1)
$ = P(0)

F ⇥ E (1)
$/F = P(0)

F ⇥ E (0)
$/F ⇥ (1� 0.15) = P(0)

$ ⇥ (1� 0.15) = P(0)
$ + bdP(0)

$ , setting bd = �0.15.
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assets for the entire financial system is pagg
�

wagg, e, L, `
�

=
⇣

b

d

⇥

p̄agg
⇤

1

⌘

vTaggb (L, `).

Moreover, since ` = 1, GPi(wi,L,`) (t) = GVi

✓

t
b

d[p̄i]1

◆

exactly, 8i 2 {1, . . . ,M}, and

GPagg(wagg,L,`) (t) = GVagg

✓

t
b

d[p̄agg]1

◆

exactly.

Example 3.6 Suppose that the category of risk is credit risk. Specifically, forty percent of

all unique AAA-rated mortgage-backed securities have been downgraded to a CCC rating.

As a result, the price of each affected mortgage-backed security has declined 80 percent from

its original level. We are interested in the possible changes in net assets for each individual

financial institution i, 8i 2 {1, . . . ,M}, and we are interested in the possible changes in

net assets for the overall financial system.

We would like to compute the statistical features of Pi (wi, L, `), 8i 2
{1, . . . ,M}, which captures the possible changes in net assets for each individ-

ual financial institution i. We would also like to compute the statistical features of

Pagg
�

wagg, L, `
�

, which captures the possible changes in net assets for the overall fi-

nancial system. We are additionally interested in constructing asymptotic expansions

that approximate the probability distributions GPi(wi,L,`) (t), 8i 2 {1, . . . ,M}, and
GPagg(wagg,L,`) (t). We thus proceed to solve for all of the necessary variables. There

are L total unique AAA-rated mortgage-backed securities, indexed by j 2 {1, . . . , L}.
We introduce wi as the L ⇥ 1 relevant portfolio vector for financial institution i,

and we introduce wagg as the L⇥ 1 relevant portfolio vector for the overall finan-

cial system. We also introduce p̄ as the L⇥ 1 relevant price vector. We construct

wi, 8i 2 {1, . . . ,M}, wagg, and p̄ by following Example 3.1. We then construct

vi, 8i 2 {1, . . . ,M}, from the vectors wi and p̄, and we construct vagg from the

vectors wagg and p̄. We set ` = 0.4L, and we set bd = �0.8. The L⇥ 1 vector e (L, `)

identifies the indices of those AAA-rated mortgage-backed securities experiencing a

reduction in price; [e (L, `)]j = �0.8 if AAA-rated mortgage-backed security j has
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been downgraded to a CCC rating, and otherwise [e (L, `)]j = 0. Each vector e (L, `)

identifies a different subset of AAA-rated mortgage-backed securities experiencing

a percentage price reduction. There are many such vectors e (L, `) in the set E (L, `):

|E (L, `)| = ( L
0.4L). For any given vector e (L, `), the change in net assets for financial

institution i is pi (wi, e, L, `) =
⇣

b

d [p̄]1
⌘

vTi b (L, `), and the change in net assets for

the entire financial system is pagg
�

wagg, e, L, `
�

=
⇣

b

d [p̄]1
⌘

vTaggb (L, `). We can ap-

proximate both GPi(wi,L,`) (t), 8i 2 {1, . . . ,M}, and GPagg(wagg,L,`) (t) via asymptotic

expansion by following Proposition 3.8.

3.2.5 Third Risk Environment: Absolute Price Shocks, Different

Across Securities Clusters

In this third environment, the category of risk affects securities prices in a manner

different from the previous two environments. In the previous two environments,

every stressed cluster of securities had the same price adjustment. For the first

environment, every stressed cluster had the same magnitude of adjustment to its

price or value, and for the second environment, every stressed cluster had the same

percentage adjustment to its price or value. In the present environment, different

stressed clusters can potentially have different magnitudes of adjustment to their

prices or values. With L total clusters of securities, we introduce the L⇥ 1 vector d

that specifies possible price or value adjustments to the various clusters. Specifically,

one cluster’s price or value must adjust by [d]1, a separate cluster’s price or value

must adjust by [d]2, and so on. The vector d does not identify the actual indices

of the clusters receiving such price adjustments. Rather, it is the L ⇥ 1 vector

e (d) = Pd, with permutation matrix P, that specifies how each cluster of securities

adjusts in price or value. Namely, the price or value of securities in cluster 1 adjusts
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by [e (d)]1, the price or value of securities in cluster 2 adjusts by [e (d)]2, and the

price or value of securities in cluster j adjusts by [e (d)]j. The change in the market

value of net assets for financial institution i is then wT
i e (d), and the change in the

market value of net assets for the entire financial system is then wT
agge (d).

In general, there are many possible ways that a category of risk, encapsulated

by d, can manifest itself in securities prices. By rearranging the elements of d,

we keep the category of risk the same, but we change which clusters of securities

receive certain shocks to price or value. E (d) is the set of all possible configurations

of shocks given d. To generate different configurations of shocks, we rearrange or

permute the elements of d. Configurations e (d) = Pd and e0 (d) = P0d must have

P 6= P0 in order to be distinct.

As in the previous environments, we define pi (wi, e, d) = wT
i e (d) as the

change in net assets for institution i 2 {1, . . . ,M} given the configuration of shocks

e (d) = Pd, and we define pagg
�

wagg, e, d
�

= wT
agge (d) as the change in net assets

for the entire financial system given the configuration of shocks e (d) = Pd. Note

that the arguments of pi (·) and pagg (·) have changed from the previous two

environments due to the different nature of this third risk environment. We are

interested in characterizing the statistical properties of random variables Pi (wi, d),

8i 2 {1, . . . ,M}, and Pagg
�

wagg, d
�

, which respectively represent the possible

changes in net assets for financial institution i given risk category d and the possible

changes in net assets for the overall financial system given risk category d.

As before, we define random variable Wi with realization [wi]j, and we

define random variable Wagg with realization
⇥

wagg
⇤

j. Furthermore, 1Twi = ki and

1Twagg = kagg.
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Proposition 3.9 The average change in net assets for financial institution i given d is:

EPi (wi, d) =
✓

1Td

L

◆

ki,

and the average change in net assets for the entire financial system given d is:

EPagg
�

wagg, d
�

=

✓

1Td

L

◆

kagg.

Given the category of risk d, we would next like to compute the variance

of the distribution of possible changes in net assets for financial institution i, and

we would like to compute the variance of the distribution of possible changes in

net assets for the overall financial system. To solve in closed form for these second

moments we need to develop some additional notation. We introduce the L⇥ 1

random vector D whose elements are the random variables Dj, j 2 {1, . . . , L}. Each
random variable Dj, j 2 {1, . . . , L}, has the underlying CDF

GDj (t) =
1
L

L

Â
m=1

1[d]mt;

it’s the empirical probability distribution formed from the elements of d. For each

random variable Dj, we draw a value from the elements of d. These draws are

done without replacement; when drawing a value for D1, there are L scalars to

choose from, while there is only one scalar to choose from when drawing a value for

DL. This is what makes the random variables D1, . . . ,DL identically distributed but

not independent. Note that EDj =
1Td
L and VarDj =

1
L ÂL

m=1
�

[d]m � EDj
�2. Then

observe that Pi (wi, d) = wT
i D and Pagg

�

wagg, d
�

= wT
aggD.
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Proposition 3.10 The change in net assets for financial institution i has a variance of:

VarPi (wi, d) =
�

VarDj
�

L

Â
m=1

([wi]m)
2

+
�

E
⇥

DjDr
⇤� �EDj

�

(EDr)
�

"

(L� 1)
L

Â
m=1

([wi]m)
2 � L2 VarWi

#

,

and the change in net assets for the entire financial system has a variance of:

VarPagg
�

wagg, d
�

=
�

VarDj
�

L

Â
m=1

�⇥

wagg
⇤

m
�2

+
�

E
⇥

DjDr
⇤� �EDj

�

(EDr)
�

"

(L� 1)
L

Â
m=1

�⇥

wagg
⇤

m
�2 � L2 VarWagg

#

.

We need to compute E
⇥

DjDr
⇤

, keeping in mind that sampling from the elements of d

is done without replacement. When the support of Dj is small, it is straightforward

to compute E
⇥

DjDr
⇤

by hand.

We proceed to compute the lower and upper bounds on the supports of

Pi (wi, d) and Pagg
�

wagg, d
�

:

Proposition 3.11 Construct the ordered multiset
�

w̃j
 L
j=1 from the elements of wi so that

w̃j  w̃j0 whenever j  j0. Also construct the ordered multiset
�

d̃j
 L
j=1 from the elements of

d so that d̃j  d̃j0 whenever j  j0. Then,

min suppPi (wi, d) = w̃1d̃L + w̃2d̃L�1 + · · ·+ w̃Ld̃1 and

max suppPi (wi, d) = w̃1d̃1 + w̃2d̃2 + · · ·+ w̃Ld̃L.

Now construct the ordered multiset
�

x̃j
 L
j=1 from the elements of wagg so that x̃j  x̃j0

whenever j  j0. Then,

min suppPagg
�

wagg, d
�

= x̃1d̃L + x̃2d̃L�1 + · · ·+ x̃Ld̃1 and

max suppPagg
�

wagg, d
�

= x̃1d̃1 + x̃2d̃2 + · · ·+ x̃Ld̃L.
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While we cannot compute GPi(wi,d) (t) and GPagg(wagg,d) (t) exactly by hand,

we can instead simulate these probability distributions by randomly drawing vectors

e (d) from the set E (d) and computing the corresponding quantities pi (wi, e, d)

and pagg
�

wagg, e, d
�

.

Example 3.7 Suppose that the category of risk is solvency risk. Specifically, 100 public

companies have filed for Chapter 11 bankruptcy.9 Each of these public companies undergoes

corporate debt restructuring. Each public company renegotiates its debt obligations so that a

certain amount of debt is forgiven. As a result, the price of each company’s bonds decreases by

a fixed amount, with the magnitudes of corporate bond price reductions potentially varying

across bankrupt firms. Given this form of solvency risk, we are interested in the possible

changes in net assets for each individual financial institution i, 8i 2 {1, . . . ,M}, and we

are interested in the possible changes in net assets for the overall financial system.

We would like to compute the statistical features of Pi (wi, d),

8i 2 {1, . . . ,M}, which captures possible changes in net assets for each individual

financial institution i, and we would like to compute the statistical features of

Pagg
�

wagg, d
�

, which captures possible changes in net assets for the overall financial

system. We thus proceed to solve for all of the necessary variables. There are L total

public companies with issued corporate debt. Each public company is indexed by

j 2 {1, . . . , L}. We introduce wi as the L⇥ 1 relevant portfolio vector for financial

institution i, and we introduce wagg as the L⇥ 1 relevant portfolio vector for the

overall financial system. We set [wi]j equal to the number of bonds from public

company j held by financial institution i, and we set
⇥

wagg
⇤

j equal to the total

number of bonds from public company j held by all M financial institutions in the

financial system. We next construct the L⇥ 1 price vector p̄. [p̄]j is equal to the initial

9In 2008, 136 public companies filed for bankruptcy protection. Source: Jones Day, "The Year in
Bankruptcy: 2008." Accessed March 27, 2019.
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price of a corporate bond issued by public company j. The L⇥ 1 vector d captures the

changes in the dollar prices of corporate bonds for bankrupt public companies. One

public company’s corporate bond price reduces by [d]1, another public company’s

corporate bond price reduces by [d]2, and so on. Since each bankrupt public

company experiences a reduction in its corporate bond price, we have [d]j < 0

for j 2 {1, . . . , 100}. Meanwhile, there is no change in corporate bond prices for

the remaining public companies, so [d]j = 0 for j 2 {101, . . . , L}. There are many

possible configurations of price shocks among public companies. The L⇥ 1 vector

e (d) = Pd, with permutation matrix P, maps the set of price shocks encapsulated

in the vector d to the set of public companies. Public company 1 experiences a

corporate debt price shock of [e (d)]1, public company 2 experiences a corporate

debt price shock of [e (d)]2, and public company j experiences a corporate debt

price shock of [e (d)]j. For a given configuration of price shocks e (d), the change in

net assets for financial institution i is pi (wi, e, d) = wT
i e (d), and the change in net

assets for the entire financial system is pagg
�

wagg, e, d
�

= wT
agge (d). The set of all

possible configurations of price shocks is E (d). If each restructured company has a

different corporate bond price reduction, then there are |E (d)| = L!
(L�100)! unique

configurations of price shocks among all L public companies with issued corporate

debt.

3.2.6 Fourth Risk Environment: Percentage Price Shocks, Differ-

ent Across Securities Clusters

In this final environment, any given category of risk affects securities prices in the

following manner. Stressed clusters of securities face percentage adjustments to

their market values. Unlike the second environment, different stressed clusters
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of securities can face different percentage adjustments. With L total clusters of

securities, we introduce the L⇥ 1 price vector p̄. If each cluster of securities j contains

only one type of security, 8j 2 {1, . . . , L}, then we set [p̄]j equal to the initial price

of the security in that cluster. Meanwhile, if at least one cluster contains more than

one type of security, then for all j 2 {1, . . . , L}, we set [p̄]j equal to the initial market

value of the collection of securities in cluster j. We also introduce the L⇥ 1 vector bd,

which specifies possible percentage adjustments to the values of various clusters.

Specifically, one cluster’s value experiences a percentage adjustment
h

bd
i

1
, another

cluster’s value experiences a percentage adjustment
h

bd
i

2
, and so on. Equivalently,

the prices of securities in one cluster each experience a percentage adjustment
h

bd
i

1
,

the prices of securities in another cluster each experience a percentage adjustment
h

bd
i

2
, and so on. The vector bd does not identify the actual indices of the clusters

receiving such price adjustments. Rather, it is the L⇥ 1 vector e
⇣

bd
⌘

= Pbd, with

permutation matrix P, that specifies how each cluster of securities adjusts in value.

Namely, securities in cluster 1 experience a percentage adjustment
h

e
⇣

bd
⌘i

1
to their

value, securities in cluster 2 experience a percentage adjustment
h

e
⇣

bd
⌘i

2
to their

value, and securities in cluster j experience a percentage adjustment
h

e
⇣

bd
⌘i

j
to

their value. Given this configuration of shocks e
⇣

bd
⌘

, the change in the market

value of net assets for financial institution i is wT
i

⇣

e
⇣

bd
⌘

� p̄
⌘

, and the change in

the market value of net assets for the overall financial system is wT
agg

⇣

e
⇣

bd
⌘

� p̄
⌘

.

There are many possible ways that a category of risk, encapsulated by bd, can

manifest itself in securities prices. By rearranging the elements of bd, we keep the

category of risk the same, but we change which clusters of securities receive certain

percentage shocks to price or value. E
⇣

bd
⌘

is the set of all possible configurations

of shocks given bd. To generate different configurations of shocks, we rearrange

or permute the elements of bd. Configurations e
⇣

bd
⌘

= Pbd and e0
⇣

bd
⌘

= P0
bd must

201



www.manaraa.com

have P 6= P0 in order to be distinct. We define pi

⇣

wi, e, bd
⌘

= wT
i

⇣

e
⇣

bd
⌘

� p̄
⌘

as the

change in net assets for financial institution i 2 {1, . . . ,M} given the configuration

of shocks e
⇣

bd
⌘

= Pbd, and we define pagg

⇣

wagg, e, bd
⌘

= wT
agg

⇣

e
⇣

bd
⌘

� p̄
⌘

as the

change in net assets for the overall financial system given the configuration of shocks

e
⇣

bd
⌘

= Pbd. We are interested in characterizing the statistical properties of the ran-

dom variable Pi

⇣

wi, bd
⌘

, 8i 2 {1, . . . ,M}, whose realizations are pi

⇣

wi, e, bd
⌘

, and

we are interested in characterizing the statistical properties of the random variable

Pagg

⇣

wagg, bd
⌘

, whose realizations are pagg

⇣

wagg, e, bd
⌘

. Pi

⇣

wi, bd
⌘

represents the

possible changes in net assets for financial institution i given risk category bd, and

Pagg

⇣

wagg, bd
⌘

represents the possible changes in net assets for the overall financial

system given risk category bd.

To solve for the statistical features of Pi

⇣

wi, bd
⌘

, 8i 2 {1, . . . ,M}, and

Pagg

⇣

wagg, bd
⌘

, we first need to introduce the additional variables vi,

8i 2 {1, . . . ,M}, and vagg, which we define below:

vi =
✓

[wi]1
[wi]2[p̄]2

[p̄]1
· · · [wi]L[p̄]L

[p̄]1

◆T
, and

vagg =
✓

⇥

wagg
⇤

1
[wagg]2[p̄]2

[p̄]1
· · · [wagg]L[p̄]L

[p̄]1

◆T
.

We then have the following lemma:

Lemma 3.2 Given the configuration of shocks e
⇣

bd
⌘

, the change in the market value of net

assets for financial institution i is:

wT
i

⇣

e
⇣

bd
⌘

� p̄
⌘

= [p̄]1 v
T
i e
⇣

bd
⌘

,

8i 2 {1, . . . ,M}, and the change in the market value of net assets for the entire financial

system is:

wT
agg

⇣

e
⇣

bd
⌘

� p̄
⌘

= [p̄]1 v
T
agge

⇣

bd
⌘

.
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We let 1Tvi = ki, 8i 2 {1, . . . ,M}, and we let 1Tvagg = kagg. We also define

random variable Vi with realization [vi]j, and we define random variable Vagg with

realization
⇥

vagg
⇤

j. Each realization is equally likely, and that allows us to define

population moments for Vi and Vagg.

The first moments of Pi

⇣

wi, bd
⌘

and Pagg

⇣

wagg, bd
⌘

are as follows:

Proposition 3.12 The average change in net assets for financial institution i given bd is:

EPi

⇣

wi, bd
⌘

= [p̄]1

 

1T bd
L

!

ki,

and the average change in net assets for the financial system given bd is:

EPagg

⇣

wagg, bd
⌘

= [p̄]1

 

1T bd
L

!

kagg.

Given bd, we would next like to compute the variance of the distribution

of possible changes in net assets for financial institution i, and we would like to

compute the variance of the distribution of possible changes in net assets for the

overall financial system. To solve in closed form for these second moments, we

need to develop some additional notation. We introduce the L⇥ 1 random vector bD

whose elements are the random variables bDj, j 2 {1, . . . , L}. Each random variable

bDj, j 2 {1, . . . , L} has the underlying CDF

G
bDj
(t) =

1
L

L

Â
m=1

1[bd]mt;

it’s the empirical probability distribution formed from the elements of bd. For

each random variable bDj, we draw a value from the elements of bd. These draws

are done without replacement; when drawing a value for bD1, there are L scalars

to choose from, while there is only one scalar to choose from when drawing a

value for bDL. This is what makes the random variables bD1, . . . , bDL identically
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distributed but not independent. The first two population moments for bDj are

EbDj =
1T bd
L and Var bDj =

1
L ÂL

m=1

⇣h

bd
i

m
� EbDj

⌘2
. Note that Pi

⇣

wi, bd
⌘

= [p̄]1 v
T
i
bD

and Pagg

⇣

wagg, bd
⌘

= [p̄]1 v
T
aggbD.

Proposition 3.13 Given bd, the change in net assets for financial institution i has a variance

of:

VarPi

⇣

wi, bd
⌘

= ([p̄]1)
2 ⇥

 

⇣

Var bDj

⌘ L

Â
m=1

([vi]m)
2

+
⇣

E
h

bDjbDr

i

�
⇣

EbDj

⌘ ⇣

EbDr

⌘⌘

"

(L� 1)
L

Â
m=1

([vi]m)
2 � L2 VarVi

#!

,

and the change in net assets for the entire financial system has a variance of:

VarPagg

⇣

wagg, bd
⌘

= ([p̄]1)
2 ⇥

 

⇣

Var bDj

⌘ L

Â
m=1

�⇥

vagg
⇤

m
�2

+
⇣

E
h

bDjbDr

i

�
⇣

EbDj

⌘ ⇣

EbDr

⌘⌘

"

(L� 1)
L

Â
m=1

�⇥

vagg
⇤

m
�2 � L2 VarVagg

#!

,

We must compute E
h

bDjbDr

i

, keeping in mind that sampling from the elements of bd

is done without replacement. It is straightforward to compute E
h

bDjbDr

i

, especially

when bDj has a small support.

We next compute the lower and upper bounds on the supports of Pi

⇣

wi, bd
⌘

,

and Pagg

⇣

wagg, bd
⌘

. These lower and upper bounds determine the range of possible

adjustments to net income for each individual financial institution and the overall

financial system given bd.

Proposition 3.14 Construct the ordered multiset
�

ṽj
 L
j=1 from the elements of vi so that

ṽj  ṽj0 whenever j  j0. Also construct the ordered multiset
�

d̃j
 L
j=1 from the elements of

bd so that d̃j  d̃j0 whenever j  j0. Then

min suppPi

⇣

wi, bd
⌘

= [p̄]1 ⇥
�

ṽ1d̃L + ṽ2d̃L�1 + · · ·+ ṽLd̃1
�

and
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max suppPi

⇣

wi, bd
⌘

= [p̄]1 ⇥
�

ṽ1d̃1 + ṽ2d̃2 + · · ·+ ṽLd̃L
�

.

Now construct the ordered multiset
�

x̃j
 L
j=1 from the elements of vagg so that x̃j  x̃j0

whenever j  j0. Then,

min suppPagg

⇣

wagg, bd
⌘

= [p̄]1 ⇥
�

x̃1d̃L + x̃2d̃L�1 + · · ·+ x̃Ld̃1
�

and

max suppPagg

⇣

wagg, bd
⌘

= [p̄]1 ⇥
�

x̃1d̃1 + x̃2d̃2 + · · ·+ x̃Ld̃L
�

.

While we cannot compute GPi(wi,bd) (t) and GPagg(wagg,bd) (t) exactly by hand,

we can instead simulate these probability distributions by randomly drawing vectors

e
⇣

bd
⌘

from the set E
⇣

bd
⌘

and computing the corresponding quantities pi

⇣

wi, e, bd
⌘

and pagg

⇣

wagg, e, bd
⌘

.

Example 3.8 Suppose that the category of risk is industry risk. Specifically, the prices of

securities in one industry decline by 20 percent, the prices of securities in another industry

decline by 10 percent, and the prices of securities in a third industry increase by 12 percent.

Securities have been issued for every industry. We are interested in the possible changes in

net assets for each individual financial institution i, 8i 2 {1, . . . ,M}, and we are interested

in the possible changes in net assets for the overall financial system.

We would like to compute the statistical features of Pi

⇣

wi, bd
⌘

,

8i 2 {1, . . . ,M}, which captures possible changes in net assets for each individual

financial institution i, and we would like to compute the statistical features of

Pagg

⇣

wagg, bd
⌘

, which captures possible changes in net assets for the overall financial

system. We therefore solve for all of the necessary variables. There are L total

industries, with each industry indexed by j 2 {1, . . . , L}. We introduce wi as the

L ⇥ 1 relevant portfolio vector for financial institution i, and we introduce wagg

as the L ⇥ 1 relevant portfolio vector for the overall financial system. We also

introduce p̄i as the L⇥ 1 relevant price vector for financial institution i, and we
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introduce p̄agg as the relevant price vector for the overall financial system. We

construct wi, 8i 2 {1, . . . ,M}, wagg, p̄i, 8i 2 {1, . . . ,M}, and p̄agg by following

Example 3.3. We then construct vi, 8i 2 {1, . . . ,M}, from the vectors wi and p̄i,

and we construct vagg from the vectors wagg and p̄agg. The L⇥ 1 vector bd captures

percentage changes to the values of securities in each industry. For the category

of risk in this example, we set
h

bd
i

1
= �0.20,

h

bd
i

2
= �0.10,

h

bd
i

3
= 0.12, and

h

bd
i

j
= 0 for j 2 {4, . . . , L}. There are many possible configurations of price shocks

among industries. The L⇥ 1 vector e
⇣

bd
⌘

= Pbd, with permutation matrix P, maps

the set of price shocks encapsulated in the vector bd to the set of industries. The

securities from industry 1 experience a percentage price shock of
h

e
⇣

bd
⌘i

1
, the

securities from industry 2 experience a percentage price shock of
h

e
⇣

bd
⌘i

2
, and the

securities from industry j experience a percentage price shock of
h

e
⇣

bd
⌘i

j
. Given a

particular configuration e
⇣

bd
⌘

of percentage price shocks, the change in net assets

for financial institution i is pi

⇣

wi, e, bd
⌘

= [p̄i]1 v
T
i e
⇣

bd
⌘

, and the change in net

assets for the overall financial system is pagg

⇣

wagg, e, bd
⌘

=
⇥

p̄agg
⇤

1 v
T
agge

⇣

bd
⌘

. The

set of all possible configurations of percentage price shocks is E
⇣

bd
⌘

, with there

being
�

�

�

E
⇣

bd
⌘

�

�

�

= L!
(L�3)! = L⇥ (L� 1)⇥ (L� 2) such unique configurations.

3.2.7 Combining Categories of Risk to Generate Entire Classes of

Stress Tests

Thus far, we have been studying four different environments that specify how

categories of risk can affect securities prices. Each environment represents a different

way that a category of risk can alter net assets for individual financial institutions

and the overall financial system. Categories of risk in the first environment generate

an absolute adjustment to the values of a certain number of securities clusters, with
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stressed clusters facing the same magnitude of adjustment. Categories of risk in

the second environment generate a percentage adjustment to the values of a certain

number of securities clusters, with stressed clusters facing the same percentage

adjustment. Categories of risk in the third environment generate potentially different

levels of adjustment to the values of securities clusters, and categories of risk

in the fourth environment generate potentially different percentage adjustments

to the values of securities clusters. Any category of risk fits into one of these

four environments. We can map the category of risk to a probability distribution

capturing possible balance sheet effects for each individual financial institution,

8i 2 {1, . . . ,M}, and we can map the category of risk to a probability distribution

capturing possible balance sheet effects for the overall financial system. When

the individual category of risk fits into the first or second environments, we can

either construct the corresponding probability distributions in closed form, or we

can construct asymptotic expansions that strongly approximate the CDFs of these

probability distributions. When the individual category of risk fits into the third or

fourth environments, we can solve in closed form for the major statistical features

of the corresponding probability distributions.

Now that we have thoroughly studied individual categories of risk, we

would like to construct classes of stress tests. Each class of stress tests features Q

categories of risk. We therefore index each category of risk by q 2 {1, . . . ,Q}. We

define random variable Pq
i (·) as the change in net assets for financial institution i,

8i 2 {1, . . . ,M}, given category of risk q, and we define random variable Pq
agg (·)

as the change in net assets for the overall financial system given category of risk q.

Corresponding to these random variables are the CDFs GPq
i (·) (t) and GPq

agg(·) (t)

and the PMFs gPq
i (·) (t) and gPq

agg(·) (t).

For a given class of stress tests, the random variables Pclass
i , 8i 2 {1, . . . ,M},
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and Pclass
agg respectively capture the entire change in net assets for financial institu-

tion i and the entire change in net assets for the overall financial system. We then

have the following relationships:

Pclass
i = P1

i (·) + P2
i (·) + · · ·+ PQ

i (·) , with

gPclass
i

(t) =
⇣

gP1
i (·) ⇤ gP2

i (·) ⇤ · · · ⇤ gPQ
i (·)
⌘

(t) ,

8i {1, . . . ,M}, and

Pclass
agg = P1

agg (·) + P2
agg (·) + · · ·+ PQ

agg (·) , with

gPclass
agg

(t) =
⇣

gP1
agg(·) ⇤ gP2

agg(·) ⇤ · · · ⇤ gPQ
agg(·)

⌘

(t) .10

Let
�

�Eclass�
� be the unique number of stress tests in the entire class given that each

category of risk q has |Eq| possible configurations of price shocks. Then,

�

�

�

Eclass
�

�

�

=
�

�

�

E1
�

�

�

⇥
�

�

�

E2
�

�

�

⇥ · · ·⇥
�

�

�

EQ
�

�

�

,

which can be extremely large.

We can solve for the major statistical features of Pclass
i , 8i 2 {1, . . . ,M}, and

Pclass
agg in closed form. For all financial institutions i 2 {1, . . . ,M},

EPclass
i =

Q

Â
q=1

EPq
i (·) , VarPclass

i =
Q

Â
q=1

VarPq
i (·) ,

min suppPclass
i =

Q

Â
q=1

min suppPq
i (·) , and

10If more than one category of risk fits into the third environment and/or the fourth environment,
we assume that each category of risk causes a percentage change to the original value of the securities
cluster. We do not consider the case in which percentage changes to the value of a securities cluster
are applied sequentially.
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max suppPclass
i =

Q

Â
q=1

max suppPq
i (·) .

Meanwhile, for Pclass
agg ,

EPclass
agg =

Q

Â
q=1

EPq
agg (·) , VarPclass

agg =
Q

Â
q=1

VarPq
agg (·) ,

min suppPclass
agg =

Q

Â
q=1

min suppPq
agg (·) , and

max suppPclass
agg =

Q

Â
q=1

max suppPq
agg (·) .

When category of risk q fits into the first or second environment, we can approximate

gPq
i (·) (t) and gPq

agg(·) (t) using the relevant asymptotic expansion. If the category of

risk fits into the first environment, we establish the following approximations:

GPq
i (·) (t) ⇡ J

0

@

bw, L, `,
t� EPq

i (·)
�

VarPq
i (·)

�1/2

1

A , 8i 2 {1, . . . ,M} ,

with bwj =
[wi]j�EWip

LVarWi
, and

GPq
agg(·) (t) ⇡ J

0

@

bw, L, `,
t� EPq

agg (·)
�

VarPq
agg (·)

�1/2

1

A ,

with bwj =
[wagg]j�EWaggp

LVarWagg
. Depending on the particular category of risk, we need to

determine the relevant support for the probability mass functions. If we suppose

that the supports of gPq
i (·) (t), 8i 2 {1, . . . ,M}, and gPq

agg(·) (t) take integer values,

that is, t 2 Z, then

gPq
i (·) (t) ⇡ lim

k"0.5
J

0

@

bw, L, `,
(t+ k)� EPq

i (·)
�

VarPq
i (·)

�1/2

1

A� J

0

@

bw, L, `,
(t� 0.5)� EPq

i (·)
�

VarPq
i (·)

�1/2

1

A ,
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8i 2 {1, . . . ,M}, with bwj =
[wi]j�EWip

LVarWi
, and

gPq
agg(·) (t) ⇡ lim

k"0.5
J

0

@

bw, L, `,
(t+ k)� EPq

agg (·)
�

VarPq
agg (·)

�1/2

1

A

� J

0

@

bw, L, `,
(t� 0.5)� EPq

agg (·)
�

VarPq
agg (·)

�1/2

1

A ,

with bwj =
[wagg]j�EWaggp

LVarWagg
.

We consider three different examples that characterize possible changes in

net assets for individual financial institutions and the overall financial system given

a particular stress test class:

Example 3.9 Our class of stress tests is formed from the following category of risk: credit

risk. Specifically, forty percent of all unique AAA-rated mortgage-backed securities have

been downgraded to a CCC rating. As a result, the price of each affected mortgage-backed

security has declined 80 percent from its original level. In addition, the euro has depreciated

by 15 percent relative to the U.S. dollar. We are interested in the possible changes in net

assets for each individual financial institution i, 8i 2 {1, . . . ,M}, and we are interested in

the possible changes in net assets for the overall financial system.

Here we have Q = 1. Let scalar gi be the change in the market value of

net assets for financial institution i, 8i 2 {1, . . . ,M}, when the euro depreciates 15

percent relative to the U.S. dollar. Let scalar gagg be the change in the market value

of net assets for the entire financial system when the euro depreciates 15 percent

relative to the U.S. dollar. Random variable P1
i (·) captures possible changes in net

assets for financial institution i arising from the downgrade of AAA-rated mortgage-

backed securities, and random variable P1
agg (·) captures possible changes in net

assets for the overall financial system arising from this downgrade of mortgage-
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backed securities. We then have:

Pclass
i = P1

i (·) + gi, 8i 2 {1, . . . ,M} , and
Pclass

agg = P1
agg (·) + gagg.

Random variables P1
i (·) and P1

agg (·) are constructed by following Example 3.6. We

can construct GP1
i (·) (t) and GP1

agg(·) (t) via asymptotic expansion. With

GPclass
i

(t) = GP1
i (·) (t� gi) , 8i 2 {1, . . . ,M} , and

GPclass
agg

(t) = GP1
agg(·)

�

t� gagg
�

,

we can strongly approximate GPclass
i

(t) and GPclass
agg

(t) by asymptotic expansion as

well. With L total initial AAA-rated mortgage-backed securities, the number of

stress test scenarios in this class is
�

�Eclass�
� = ( L

0.4L). Corresponding to all of these

stress tests are probability distributions that capture possible changes in net assets

for each individual financial institution and possible changes in net assets for the

overall financial system.

Example 3.10 Our class of stress tests is formed from two categories of risk:

(1) Credit risk. Specifically, forty percent of all unique AAA-rated mortgage-backed securities

have been downgraded to a CCC rating. As a result, the price of each affected mortgage-

backed security has declined 80 percent from its original level.

(2) Exchange rate risk. Specifically, one foreign currency has depreciated by 15 percent

relative to the U.S. dollar.

We are interested in the possible changes in net assets for each individual financial

institution i, 8i 2 {1, . . . ,M}, and we are interested in the possible changes in net assets

for the overall financial system.

Here we have Q = 2. Random variable P1
i (·) captures possible changes in net
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assets for financial institution i arising from the downgrade of AAA-rated mortgage-

backed securities, and random variable P1
agg (·) captures possible changes in net

assets for the overall financial system arising from this downgrade of mortgage-

backed securities. We can construct P1
i (·) and P1

agg (·) by following Example 3.6. We

can also strongly approximate GP1
i (·) (t) and GP1

agg(·) (t) via asymptotic expansion.

Now, random variable P2
i (·) captures possible changes in net assets for financial

institution i arising from foreign currency depreciation, and random variable P2
agg (·)

captures possible changes in net assets for the overall financial system arising from

foreign currency depreciation. We can construct P2
i (·) and P2

agg (·) by following

Example 3.5, and as discussed in that example, we can solve for GP2
i (·) (t) and

GP2
agg(·) (t), and their corresponding PMFs, exactly. We then have:

Pclass
i = P1

i (·) + P2
i (·) , 8i 2 {1, . . . ,M} , and

Pclass
agg = P1

agg (·) + P2
agg (·) , with

gPclass
i

(t) =
⇣

gP1
i (·) ⇤ gP2

i (·)
⌘

(t) , 8i 2 {1, . . . ,M} , and

gPclass
agg

(t) =
⇣

gP1
agg(·) ⇤ gP2

agg(·)
⌘

(t) .

We can generate gP1
i (·) (t) and gP1

agg(·) (t) from the asymptotic expansions that

strongly approximate the CDFs GP1
i (·) (t) and GP1

agg(·) (t). With L1 total unique

initial AAA-rated mortgage-backed securities and L2 total foreign currencies, the

number of distinct stress test scenarios in this class is
�

�Eclass�
� = ( L1

0.4L1)⇥ L2.

Example 3.11 Our class of stress tests is formed from three categories of risk:

(1) Credit risk. Specifically, forty percent of all unique AAA-rated mortgage-backed securities

have been downgraded to a CCC rating. As a result, the price of each affected mortgage-

backed security has declined 80 percent from its original level.
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(2) Exchange rate risk. Specifically, one foreign currency has depreciated by 15 percent

relative to the U.S. dollar.

(3) Sovereign risk. Specifically, one country has a writedown of its sovereign debt, which

causes the price of each sovereign bond for that country to decrease 10 U.S. dollars.

We are interested in the possible changes in net assets for each individual financial

institution i, 8i 2 {1, . . . ,M}, and we are interested in the possible changes in net assets

for the overall financial system.

Here we have Q = 3. We build on Example 3.10. Random variable P3
i (·)

captures possible changes in net assets for financial institution i arising from a

writedown of sovereign debt, and P3
agg (·) captures possible changes in net assets

for the overall financial system arising from a writedown of sovereign debt. We

can construct P3
i (·) and P3

agg (·) by following Example 3.4, and as discussed in that

example, we can solve for GP3
i (·) (t) and GP3

agg(·) (t), and their corresponding PMFs,

exactly. We then have

Pclass
i = P1

i (·) + P2
i (·) + P3

i (·) , 8i 2 {1, . . . ,M} , and
Pclass

agg = P1
agg (·) + P2

agg (·) + P3
agg (·) , with

gPclass
i

(t) =
⇣

gP1
i (·) ⇤ gP2

i (·) ⇤ gP3
i (·)
⌘

(t) , 8i 2 {1, . . . ,M} , and

gPclass
agg

(t) =
⇣

gP1
agg(·) ⇤ gP2

agg(·) ⇤ gP3
agg(·)

⌘

(t) .

With L1 total unique initial AAA-rated mortgage-backed securities, L2 total foreign

currencies, and L3 total countries that have issued sovereign bonds, the total number

of stress test scenarios in this class is
�

�Eclass�
� = ( L1

0.4L1)⇥ L2 ⇥ L3. Corresponding to

this class of stress tests with its many underlying stress test scenarios is a probability

distribution summarizing possible balance sheet effects for each individual financial
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institution and a probability distribution summarizing possible balance sheet effects

for the overall financial system.

3.3 Conclusion

The global financial crisis of 2008 forced a regulatory paradigm shift for central

banks and other supervisory institutions around the world. As a result of the global

financial crisis, supervisory institutions expanded their mandates. They rethought

their specific functions, and they developed new approaches to regulation. In partic-

ular, central banks such as the Federal Reserve began to develop and implement

stress tests as part of a new financial stability mandate, and they nominally shifted

their regulatory approaches from ones that were purely microprudential to ones

that were both macroprudential and microprudential.

Within the United States, even though stress tests were used in the financial

industry prior to the global financial crisis, annual supervisory stress tests only

became a mandatory part of the Federal Reserve’s regulatory toolkit with the

passage of the 2010 Dodd-Frank Act. Globally, it was the post-crisis Basel III capital

framework that articulated principles of stress testing for regulatory institutions;

these global institutions could then use the Basel III framework as a constructive set

of guidelines for developing their own stress tests.

The Federal Reserve’s set of stress tests, while designed to assess the stability

of individual financial institutions and the financial system as a whole, can be

made much more comprehensive and impactful. We want the Federal Reserve’s

stress testing tools to be maximally informative, but in their current form, they only

provide a limited view of the financial landscape and the broader macroeconomy.

The number of stress tests that the Federal Reserve executes annually is very small,
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and the stress test scenarios are often calibrated to past historical events. As a result,

current stress tests do not adequately assess the financial system’s overall health

and ability to maintain operations and obligations in the presence of a broad range

of possible negative shocks. The financial system can potentially be ill-equipped to

handle certain realistic stressed scenarios, but this weakness will never be uncovered

while employing the Federal Reserve’s current stress testing approach. The present

work shows how to massively increase the total number of stress test scenarios

without increasing the computational burden; this work therefore substantially

strengthens the Federal Reserve’s stress testing process. Rather than collecting

a small number of data points summarizing financial institutions’ balance sheet

effects for each individual stress test, the Federal Reserve can instead construct entire

probability distributions that capture financial institutions’ balance sheet effects for

a class of stress tests. Associated with each class of stress tests is a corresponding

probability distribution for each individual financial institution and a probability

distribution for the financial system as a whole.

The approach to stress tests in this work differs from the Federal Reserve’s

existing approach. The Federal Reserve currently develops a very small number of

stress tests that generally mimic past historical events. The present work, meanwhile,

articulates a different framework for the Federal Reserve; according to the present

work, the Federal Reserve would first identify different classes of stress tests, and

then within each class, the Federal Reserve would generate an exhaustive list of

constituent stress tests. The Federal Reserve would form each class of stress tests

by identifying certain categories of risk. Different stress tests within the same class

have the same categories of risk, but the manner by which such risks manifest

themselves within the financial system would differ. The approach of this work for

generating large classes of stress tests is top-down and macroprudential in spirit;
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we are assuming that the financial system inherently has certain types of overall

stressors, but we are agnostic to how these stressors ultimately appear in the system.

We consider all of the multitudinous ways by which these stressors can potentially

manifest themselves.

Going forward, it is important that we craft a methodology for how to

construct classes of stress tests. We would want to know which categories of risk

are the most relevant and therefore appropriate for more thorough examination. We

would also want to know how many different classes of stress tests are sufficient to

enable thorough analysis of the financial system. Having the correct set of tools is

crucial for the Federal Reserve and other central banks. These tools, when properly

designed and employed, provide regulatory institutions with the ability to pinpoint

potential sources of weakness within the financial system, evaluate the financial

system’s overall health, and more generally survey the financial landscape. The

financial system is inherently global, and shocks within the financial system transmit

to the broader macroeconomy, so it is extremely important that we develop and

employ the right set of regulatory tools.
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Appendix A

Appendix to Chapter 1

A.1 Data

A.1.1 Construction of Viewership, Listenership, and Readership

Statistics

IndieWire provides nightly primetime television viewership statistics in 2016 for

almost every ad-supported broadcast and cable network.1 Only networks that

provide non-sports news and/or talk coverage are included in the sample. PBS

network viewership is set equal to 2016 total average viewership for its NewsHour

program.2

Radio listenership data comes from Wikipedia3, with many of the statistics

1http://www.indiewire.com/2016/12/cnn-fox-news-msnbc-nbc-ratings-2016-winners-losers-
1201762864/. Accessed February 21, 2018.

2Statistic provided by the Pew Research Center. http://www.journalism.org/chart/pbs-
newshour-viewership/. Accessed February 21, 2018.

3“List of Most-Listened-To Radio Programs.” https://en.wikipedia.org/wiki/List_of_most-
listened-to_radio_programs. Accessed February 21, 2018.
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originating in TALKERS magazine.4 The data consists of weekly listenership for

several radio programs, mostly from 2017. I assume that daily listenership equals

weekly listenership, and I only include those radio shows categorized as news/talk

radio.

Readership statistics for magazines, newspapers, business journals, and

business publications come from the Alliance for Audited Media, Media Intelligence

Center.5 To obtain readership statistics for magazines, I apply the following filters:

Status - Active, Publication - Magazine, and Country - United States. I then restrict

the set of magazines to ones with the following SRDS Classifications for Magazines:

“News”, “Political & Social Topics”, “Business”, “Newspaper: Alternative”, “Popular

Culture”, “General Editorial/Content”, and “Metropolitan/Regional/State”. To

obtain readership statistics for newspapers, the filters that I apply are as follows:

Status - Active, Publication - Newspaper, and Country - United States. To obtain

readership statistics for business journals and publications, the filters that I apply

are as follows: Status - Active, Publication - Business, and Country - United States.

Readership statistics were mostly collected in 2016 and 2017. I remove Costco

Connection from the magazine sample. For those cases in which a publication has

separate statistics for its weekday circulation and its Saturday/Sunday circulation, I

designate the larger value as that publication’s readership.

CBS has the largest television network nightly primetime audience, with ap-

proximately 8.8 million viewers; NPR’s Morning Edition, NPR’s All Things Considered,

and APM’s Marketplace have the largest weekly radio listening audience, each with

approximately 14.6 million listeners; USA Today has the largest newspaper subscriber

base, with a weekday circulation of approximately 2.1 million; People magazine has

4http://www.talkers.com/top-talk-audiences/. Archived version from September 6, 2017.

5Accessed February 21, 2018.
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the largest magazine subscriber base, with a circulation of approximately 3.4 million;

and The Who’s Who in Building & Construction has the largest business journal and

business publication readership, with a circulation of approximately 512,000.

There is a total of 1867 news/talk media sources. The audience for each of

these sources is culled from the entire U.S. population. Since the voting population

is just a subset of the entire U.S. population, we must scale down the viewership,

listenership, and readership numbers to reflect the relatively smaller size of the

voting population. We assume that the entire pool of potential consumers of such

news/talk media consists of 250,293,421 individuals, the projected 2016 population

size for people aged 18 and over.6 We then multiply each audience size by the factor

137.5⇥ 106 / 250,293,421 to obtain audience statistics for the voting population.

A.1.2 Summary Statistics

We present summary statistics for the base graph, the media-originating graph,

and the composite graph that pools both the base and media-originating linkages.

In the base graph, with its undirected edges, the average degree is 51.0 with a

standard deviation of 7.07. The minimum degree is 17 and the maximum degree is

96. There is a total of 3,575,017,297 undirected edges. In the graph with directed

media-originating linkages, the average out-degree is 19.7 with a standard deviation

of 17.0. The minimum out-degree is zero, and the maximum out-degree is 165.

The average in-degree is 19.7 with a standard deviation of 8,633.3. The minimum

in-degree is zero, and the maximum in-degree is 8,020,586, the largest audience

size among all media sources. The total number of directed edges in this graph

6Table 1. Projected Population by Single Year of Age, Sex, Race, and Hispanic Origin for the
United States: 2014 to 2060, from “2014 National Population Projections Dataset,” United States
Census Bureau. https://www.census.gov/data/datasets/2014/demo/popproj/2014-popproj.html.
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is 2,712,493,694. Agents’ out-degrees occur in multiples of 15 because, if they are

exposed to one media source, they become connected to 15 individuals through

the reporting that the media source provides. The average and median number

of media sources that people are exposed to are, respectively, 1.32 and 1. 28,003

distinct people are featured in employment-related news stories over the course

of 15 weeks. In the composite graph, that is, the graph that pools edges from the

base graph and the media-originating graph, the average out-degree is 70.7 with

a standard deviation of 18.4, the minimum out-degree is 17, and the maximum

out-degree is 230. The average in-degree is 70.7 with a standard deviation of 8,633.3,

the minimum in-degree is 17, and the maximum in-degree is 8,020,651. We observe

that the counter-cumulative distribution function of in-degrees for the total network

(Figure 1.7, bottom) directly incorporates the distributional features of the counter-

cumulative distribution function of degrees for the base graph (Figure 1.7, top left)

and the counter-cumulative distribution function of in-degrees for the media graph

(Figure 1.7, middle).

A.2 Section 1.3 Supplemental Material

First, we assume that agents’ observation network is just the base graph. We would

like to construct the distribution of possible average local unemployment rates

given that there is an overall 9.6-percent global unemployment rate. We begin

by computing the vector of average weighted in-degrees, where we assume that

each agent assigns an equal weight to his or her observations of employment

status. In this setting, the vector of average weighted in-degrees is the relevant

network-derived vector of agent weights. With agent weights summing to 1, the

average weighted in-degree is 7.27⇥ 10�9 with a standard deviation of 9.98⇥ 10�10,
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the minimum average weighted in-degree is 2.67⇥ 10�9, the maximum average

weighted in-degree is 1.37⇥ 10�8, and the median average weighted in-degree

is 7.25⇥ 10�9. From these average weighted in-degrees, we can compute each

agent’s effective representation in the population. On average, each agent effectively

represents 1 agent. The agent with the smallest weight effectively represents 0.367

agents. The agent with the largest weight effectively represents 1.89 agents, and the

agent with the median weight effectively represents 0.996 agents. There is not much

heterogeneity in individual agents’ effective representations.

0.0959 0.09594 0.09598 0.09602 0.09606 0.0961
0

0.2

0.4

0.6

0.8

1

Figure A.1: Distribution of the average local unemployment rate, f = 0.096, assuming that
configurations of unemployment in the economy are equally likely, agents’ social observation network
is the base graph, and agents assign an equal weight to each of their out-linkages.

Figure A.1 plots the distribution of possible average local unemployment

rates when the global unemployment rate is 0.096, assuming that each configuration

of unemployment in the economy is equally likely to occur and agents’ observation

network is the base graph. The theoretical CDF, constructed using Theorem 1.13

in Section 1.6, overlays an empirical CDF. The empirical CDF is constructed by

simulation, randomly drawing 100,000 configurations from the set of all possible

configurations and computing the associated average local unemployment rate

for each configuration. The theoretical and empirical mean of this distribution

is 0.096 and the theoretical standard deviation is 3.45⇥ 10�6. These quantities
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are computed from Theorems 1.8 and 1.9 in Section 1.6. The minimum possible

average local unemployment rate is 0.0735, and the maximum possible average local

unemployment rate is 0.120; both quantities are constructed from Theorem 1.10 in

Section 1.6. When agents’ observation network is solely the base graph, the average

local unemployment rate does not meaningfully vary with configuration. As a

result, the election outcome, and consequently the outcome for the economy, does

not particularly depend on configuration:

Example A.1 (Voting Outcome, Base Graph) Aggregate voting behavior is character-

ized by Equation 1.4. The unemployment rate is 9.6 percent. Given that voters’ observation

network is the base graph, and voters equally weight each of their observations, the probability

that Trump’s expected vote share exceeds 0.5 is zero:

Pr
h

bFavg (Ā,N, n) > 0.10
i

= 0.

With certainty, the election outcome favors Clinton.

We next consider a social observation network whose method of construction

differs slightly from the network in the main text. The composite social observation

network considered here pools linkages from a base graph and a media graph.

The media graph is the same as the one in the main text. Meanwhile, the base

graph differs; it is constructed by assuming that each agent has a self-loop and,

on average, 20 reciprocal linkages rather than 50 reciprocal linkages. Figure A.2

presents the counter-cumulative distribution function of degrees for the base graph.

The base graph has an average degree of 21.0 with a standard deviation of 4.47.

The minimum degree is 2, while the maximum degree is 50. There is a total

of 1,512,512,933 undirected edges. Figure A.2 presents the counter-cumulative

distribution functions of in-degrees and out-degrees for the media graph and the

composite graph. The summary statistics for the unchanged media graph are
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Figure A.2: Counter-cumulative distribution function (CCDF) of degrees for the base graph when
the average number of reciprocal linkages that each agent forms is equal to 20 (top left). CCDFs of
out- and in-degrees for the network of media-originating linkages (top right). CCDFs of out- and
in-degrees for the resulting composite network (bottom).

discussed in the main text and Appendix A.1. The composite graph has an average

out-degree of 40.7, with a standard deviation of 17.5, a minimum out-degree of

2, and a maximum out-degree of 188. The composite graph also has an average

in-degree of 40.7, with a standard deviation of 8633.3, a minimum in-degree of 2,

and a maximum in-degree of 8,020,613.

We assume that agents equally weight each of their linkages on the composite

graph. We can then compute the vector of agent weights, which is the vector of

average weighted in-degrees for the composite graph. On average, each agent has

an effective weight of 1 agent. The effective minimum weight is 0.0498 agents, and

the effective maximum weight is 160,770.2 agents. The median agent has an effective
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weight of 0.600 agents. The left side of Figure A.3 plots the counter-cumulative

distribution function of average weighted in-degrees. This distribution of agent

weights is heavy-tailed.

The distribution of possible average local unemployment rates, G
bFavg(Ā,N,n) (t),

is on the right side of Figure A.3. The theoretical CDF overlays an empirical CDF,

the latter of which is constructed by randomly drawing 100,000 configurations

of unemployment from the set of all possible configurations consistent with a

9.6-percent unemployment rate, and then computing the associated average local

unemployment rate for each configuration. The theoretical and empirical mean of

this distribution is 0.096. The theoretical standard deviation for this distribution is

0.00433, or 0.433 percentage points, and the size of two standard deviations about

the distribution’s mean value is 1.73 percentage points. Staying within this two-

standard-deviation band, the average local unemployment rate can generally vary

from 8.73 percent to 10.5 percent. The lowest possible average local unemployment

rate is 3.64 percent, and the highest possible average local unemployment rate is

47.6 percent. The probability that the average local unemployment rate exceeds 10

percent is 17.7 percent. Therefore, the probability that the election outcome favors

Trump is 17.7 percent, and the probability that the election outcome favors Clinton

is 82.3 percent. This particular economy exhibits greater configuration dependence

than the economy studied in the main text.

We proceed to consider another social observation network whose method of

construction also differs slightly from the network in the main text. As before, the

composite social observation network pools linkages from a base graph and a media

graph. The base graph is the same as the one in the main text. Meanwhile, the

media graph differs; it is constructed by assuming that each news/talk media source

publishes five stories on the issue of jobs and unemployment rather than publishing
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Figure A.3: Counter-cumulative distribution function of average weighted in-degrees for the
composite network, assuming that each agent assigns an equal weight to each of his out-linkages and
the base graph consists of agents forming on average 20 reciprocal linkages (left). Distribution of the
average local unemployment rate, G

bFavg(Ā,N,n) (t), when f = 0.096, assuming that configurations of
unemployment in the economy are equally likely (right).

15 stories. As a result, for each media source, there are five featured individuals.

Figure A.4 presents the counter-cumulative distribution function of degrees for the

base graph. The statistical features of the degree distribution for the base graph

can be found in the main text and Appendix A.1. Figure A.4 additionally presents

the counter-cumulative distribution functions of in-degrees and out-degrees for the

media graph and the composite graph. In the media-originating graph, with its

904,164,565 directed edges, the average out-degree is 6.58 with a standard deviation

of 5.65, and the average in-degree is 6.58, with a standard deviation of 4,984.5. The

counter-cumulative distribution function of out-degrees for the media-originating

graph is a step function because agents accumulate 5 out-edges for every media

source in which they are an audience member. Therefore, out-degrees for the media-

originating graph occur in multiples of 5. Most voters have zero in-degree for the

media-originating graph because they are not featured in news/talk media outlets;

there are only 9,335 individuals featured in employment-related news stories. In

the composite graph, the average out-degree is 57.6 with a standard deviation of

9.05, and the average in-degree is 57.6 with a standard deviation of 4984.5. The
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Figure A.4: Counter-cumulative distribution function (CCDF) of degrees for the base graph (top
left). CCDFs of out- and in-degrees for the network of media-originating linkages when each media
source publishes five stories on the issue of jobs and unemployment (top right). CCDFs of out- and
in-degrees for the composite network (bottom).

maximum in-degree is 8,020,644.

We assume that agents equally weight each of their linkages on the composite

graph. We can then compute the vector of agent weights, which is the vector of

average weighted in-degrees for the composite graph. On average, each agent has

an effective weight of 1 agent. The effective minimum weight is 0.304 agents, and

the effective maximum weight is 131,516.8 agents. The median agent has an effective

weight of 0.889 agents. The left side of Figure A.5 plots the counter-cumulative

distribution function of average weighted in-degrees. This distribution of agent

weights is heavy-tailed.

The distribution of possible average local unemployment rates, G
bFavg(Ā,N,n) (t),
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Figure A.5: Counter-cumulative distribution function of average weighted in-degrees for the
composite network, assuming that each agent assigns an equal weight to each of his out-linkages and
each media source publishes five stories on the issue of jobs and unemployment (left). Distribution of
the average local unemployment rate, G

bFavg(Ā,N,n) (t), when f = 0.096, assuming that configurations
of unemployment in the economy are equally likely (right).

is on the right side of Figure A.5. The theoretical CDF overlays an empirical CDF,

the latter of which is constructed by randomly drawing 100,000 configurations

of unemployment from the set of all possible configurations consistent with a

9.6-percent unemployment rate, and then computing the associated average local

unemployment rate for each configuration. The theoretical and empirical mean of

this distribution is 0.096. The theoretical standard deviation for this distribution is

0.00205, or 0.205 percentage points, and the size of two standard deviations about

the distribution’s mean value is 0.820 percentage points. Staying within this two-

standard-deviation band, the average local unemployment rate can generally vary

from 9.19 percent to 10.0 percent. The lowest possible average local unemployment

rate is 6.55 percent, and the highest possible average local unemployment rate is

21.5 percent. The probability that the average local unemployment rate exceeds 10

percent is 3.27 percent. Therefore, the probability that the election outcome favors

Trump is 3.27 percent, and the probability that the election outcome favors Clinton

is 96.7 percent. This particular economy exhibits less configuration dependence than

the economy studied in the main text.
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A.3 Section 1.4 Supplemental Theorem

We first characterize bf (q)i (Ā,b,N, n) =
h

w(q)
a,i (Ā)

iT
b (N, n) = [Āq]i⇤ b (N, n) for all

finite q and in the limit as q ! • in terms of the fundamental features of Ā, and

we study the rate of convergence of bf (q)i (Ā,b,N, n) to bf (•) (Ā,b,N, n). We then

characterize w(q)
a,i (Ā) = [Āq]i⇤ for all finite q and in the limit as q ! • in terms of

the fundamental features of Ā.

Theorem A.1 For a primitive matrix Ā, all positive integers q, and all i 2 {1, . . . ,N},

bf (q)i (Ā,b,N, n) = bf (•) (Ā,b,N, n)

+
N

Â
j=1

"

hij,q +
m2�1

Â
s=0

bij,m2�s

✓

m2 � s+ q� 1
q

◆

l

q
2

#

[b]j

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘

,

where hij,q,
�

bij,m2�s
 m2�1
s=0 are constants (identified in the accompanying proof), m2 is the

algebraic multiplicity of l2, m3 is the algebraic multiplicity of l3, and hij,q = 0 whenever

q > N � 2. When m2 = 1,

bf (q)i (Ā,b,N, n) = bf (•) (Ā,b,N, n) +
N

Â
j=1

⇥

hij,q + l

q
2 bij,m2�0

⇤

[b]j

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘

.

The rate of convergence is
�

�

�

�

�

bf (q+1)
i (Ā,b,N, n)� bf (•) (Ā,b,N, n)
bf (q)i (Ā,b,N, n)� bf (•) (Ā,b,N, n)

�

�

�

�

�

= O
 

✓

1+
m2
q

◆m2�1
|l2|

!

.

As q ! •,

bf (q)i (Ā,b,N, n) = bf (•) (Ā,b,N, n) +O
⇣

qm2�1 |l2|q
⌘

.
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Quantities hij,q and
�

bij,m2�s
 m2�1
s=0 are computed by partial fraction decomposition

of the ijth element of the resolvent of Ā:

[R (z)]ij =


Adj (I� zĀ)
det (I� zĀ)

�

ij
= hij (z) +

gij

1� z
+

m2�1

Â
s=0

bij,m2�s

(1� zl2)
m2�s

+
m3�1

Â
s=0

bij,m3�s

(1� zl3)
m3�s + · · · .

Eigenvalues lj are ordered by decreasing modulus, so that
�

�

lj
�

� �
�

�

�

lj0
�

�

�

whenever

j  j0. Adj (I� zĀ) is the adjugate matrix of I� zĀ, or the transpose of the cofactor

matrix of I� zĀ, hij (z) = hij,0 + hij,1 z+ · · ·+ hij,N�2 zN�2 is a polynomial of degree

at most N � 2, with hij,q = 0 for q > N � 2, and gij =
⇥

wT
•
⇤

j.

The rate of convergence of bf (q)i (Ā,b,N, n) to its limiting consensus value

depends on the second largest eigenvalue modulus, |l2|, the algebraic multiplicity

for the second largest eigenvalue, m2, and the number of iterations, q. The higher the

value |l2|, the higher the algebraic multiplicity m2 for the second largest eigenvalue,

and/or the lower the number of iterations q, the slower the rate of convergence of

bf (q)i (Ā,b,N, n) to the consensus value. Theorem A.1 characterizes and accordingly

provides insight into finite-round DeGroot learning.

We can additionally characterize w(q)
a,i (Ā) = [Āq]i⇤ for all finite q and in the

limit as q ! • in terms of the fundamental features of Ā. Since bf (q)i (Ā,b,N, n) =
h

w(q)
a,i (Ā)

iT
b (N, n), following Theorem A.1,

N

Â
j=1

h

w(q)
a,i (Ā)

i

j
[b]j =

N

Â
j=1

"

[w• (Ā)]j + hij,q +
m2�1

Â
s=0

bij,m2�s

✓

m2 � s+ q� 1
q

◆

l

q
2

#

[b]j

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘

.
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We observe the dependence of
h

w(q)
a,i (Ā)

i

j
on matrix primitives [w• (Ā)]j, hij,q, and

�

bij,m2�s
 m2�1
s=0 for all j 2 {1, . . . ,N}.

A.4 Section 1.6 Supplemental Material

We first demonstrate how the higher-order features of the distribution of agent

weights shape the higher-order features of GX(Ā,N,n) (t) by studying the asymptotic

expansion, J (Ā,N, n, t). To illustrate how skewness of W (Ā) generates skewness

of X (Ā,N, n), take the derivative of J (Ā,N, n, t) from Theorem 1.13 with respect to

t to find an approximating probability density function to gX(Ā,N,n)�EX(Ā,N,n)
(VarX(Ā,N,n))1/2

(t):7

J0 (Ā,N, n, t) ⌘ ∂J (Ā,N, n, t)
∂t

= f (t) + H3 (t) f (t)C1

N

Â
i=1
bw3
i

+ H4 (t) f (t)

"

C2

 

N

Â
i=1
bw4
i �

3
N

!

� 1
4N

#

+ H6 (t) f (t)C3

 

N

Â
i=1
bw3
i

!2

.

The second and fourth terms in the expansion are as follows:

H3 (t) f (t)C1

N

Â
i=1
bw3
i = � 1� 2 f

6 (2pN)1/2 ( f (1� f ))1/2
⇥
⇣

3t� t3
⌘

e�t2/2 SkewW (Ā) ,

and

H6 (t) f (t)C3

 

N

Â
i=1
bw3
i

!2

=
(1� 2 f )2

72 (2p)1/2 N f (1� f )

⇥
⇣

�15+ 45t2 � 15t4 + t6
⌘

e�t2/2 (SkewW (Ā))2 ,

where f = n
N .

�

3t� t3
�

e�t2/2 is an odd function. Provided that f < 0.5 and

SkewW (Ā) > 0, the second term reallocates mass away from the normal density

7The distance,

�

�

�

�

�

gX(Ā,N,n)�EX(Ā,N,n)
(VarX(Ā,N,n))1/2

(t)� J0 (Ā,N, n, t)

�

�

�

�

�

, can also be bounded from above. See line (14)

of Robinson (1978), for example.
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function f(t) to generate positive skewness. If f > 0.5 and SkewW (Ā) > 0, the

second term reallocates mass away from the normal density function f(t) to gen-

erate negative skewness. The more heavily skewed the set of agent weights, the

more heavily skewed X (Ā,N, n). As n increases from 1 to 0.5N, the magnitude of

skewness declines, and as n increases from 0.5N to N� 1, the skewness of the distri-

bution changes signs and it increases in magnitude.
��15+ 45t2 � 15t4 + t6

�

e�t2/2

is an even function, so the reallocation of mass away from the normal density func-

tion has no effect on the skewness of the distribution. Meanwhile, the relationship

between kurtosis of the set of agent weights and kurtosis of X (Ā,N, n) is a bit

more complicated. Heavy-tailedness in the distribution of agent weights can induce

heavy-tailedness in X (Ā,N, n).

We next present some additional results concerning the behavior of gX(Ā,N,n) (t)

and more general properties of X (Ā,N, n):

Theorem A.2 If gW(Ā)(t) is symmetric, then gX(Ā,N,n)(t) is always symmetric. For any

distribution gW(Ā)(t), gX(Ā,N,n)(t) is always symmetric when f = 0.5. For all triplets

(Ā,N, n), gX(Ā,N,n)(t) = gX(Ā,N,N�n)(1� t), soVarX (Ā,N, n) = VarX (Ā,N,N � n),

SkewX (Ā,N, n) = � SkewX (Ā,N,N � n), and KurtX (Ā,N, n) =

KurtX (Ā,N,N � n).

Theorem A.2 shows that symmetry in gX(Ā,N,n) (t) arises from symmetry

in the distribution of agent weights, and when f = 0.5, gX(Ā,N,n) (t) is always

symmetric. Theorem A.2 also shows how the second, third, and fourth central

moments of the distribution exactly compare when f = n
N and when f = 1� n

N .

Theorem A.3 describes properties of the support of the distribution for X (Ā,N, n)

as f = n
N varies:

Theorem A.3 For f 2
h

0, 12
i

, the width of suppX (Ā,N, n) weakly increases at a weakly
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decreasing rate, and for f 2
h

1
2 , 1
i

, the width of suppX (Ā,N, n) weakly decreases at a

weakly increasing rate.

A.5 Statistical Features of the Multivariate Distribu-

tion

For every q 2 Z++, we study the population vector, bf(q) (Ā,b,N, n), of weighted

local relative frequencies of the attribute. Define bF(q) (Ā,N, n) to be the multivariate

random variable with realization

bf(q) (Ā,b,N, n) =
⇣

bf (q)1 (Ā,b,N, n) · · · bf (q)N (Ā,b,N, n)
⌘T

and multivariate CDF:

G
bF(q)(Ā,N,n) (t) =

1
|B (N, n)| Â

b(N,n)2B(N,n)
1
bf(q)(Ā,b,N,n)t,

where t = (t1 · · · tN)T, bf(q) (Ā,b,N, n)  t holds element-wise, and every configu-

ration is equally likely to occur. We are interested in characterizing E bF(q) (Ā,N, n)

and S(q) (Ā,N, n), the covariance matrix for bF(q) (Ā,N, n).

To determine the covariance structure of bF(q) (Ā,N, n), we first study the co-

variance of two scalar random variables, X1 (Ā,N, n) and X2 (Ā,N, n). Xi (Ā,N, n)

has realization xi (Ā,b,N, n) = [wi (Ā)]T b (N, n) for i 2 {1, 2}. The N ⇥ 1 weight-

ing vectors w1 (Ā) and w2 (Ā) may assign different weights to the same agent in

the population. For i 2 {1, 2}, random variable Wi (Ā) has realization [wi (Ā)]j.

Theorem A.4

Cov (X1 (Ā,N, n) ,X2 (Ā,N, n)) =
n
N

⇣

1� n
N

⌘ N
N � 1

(NCov (W1 (Ā) ,W2 (Ā))) .
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Cov (W1 (Ā) ,W2 (Ā)) = 1
N ÂN

j=1

⇣

[w1 (Ā)]j � 1
N

⌘ ⇣

[w2 (Ā)]j � 1
N

⌘

. If weights

[w1 (Ā)]j and [w2 (Ā)]j assigned to each agent j strongly covary across agents, then

x1 (Ā,b,N, n) and x2 (Ā,b,N, n) also strongly covary across configurations.

We now characterize the first two moments of bF(q) (Ā,N, n) for every q 2 Z++:

Theorem A.5 For all q 2 Z++ and for a primitive matrix Ā, E bF(q) (Ā,N, n) = n
N1.

Defining S(q) (Ā,N, n) as the covariance matrix for bF(q) (Ā,N, n),
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S(q) (Ā,N, n) =


n
N

⇣

1� n
N

⌘ N
N � 1

N
�

⇥
h

O
⇣

q2m2�2 |l2|2q
⌘

+Var (W• (Ā))
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11T.

The first moment of multivariate random variable bF(q) (Ā,N, n) is n
N1: EbF =

n
N1 and EbF(q) = n

N1 for all iterations q > 1. Along every dimension, the mean equals

the global frequency of the attribute. For the second moment, the ikth element of

the N ⇥ N covariance matrix S(q) (Ā,N, n) directly depends on
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Cov
⇣

W(q)
i,a (Ā) ,W(q)

k,a (Ā)
⌘

. The realizations of these random variables W(q)
i,a (Ā) and

W(q)
k,a (Ā) are respectively the elements in w(q)

i,a (Ā) and w(q)
k,a (Ā), with

h

w(q)
i,a (Ā)

iT
=

[Āq]i⇤ and
h

w(q)
k,a (Ā)

iT
= [Āq]k⇤.

limq!• Cov
⇣

W(q)
i,a (Ā) ,W(q)

k,a (Ā)
⌘

= Cov (W• (Ā) ,W• (Ā)) = Var (W• (Ā)) since

limq!• Āq = 1 [w• (Ā)]T. As q ! •, every element in the limiting covariance

matrix S(•) (Ā,N, n) therefore has the exact same value, and the corresponding

correlation matrix as q ! • equals 11T.

A.6 Network Topologies that Maximize the Variance

of the Distribution

We identify those vectors of agent weights and corresponding network topologies

for which the variance of the distribution of possible local relative frequencies of

the attribute is maximal. When each configuration of the attribute is equally likely

to occur, maximizing the variance of the local relative frequency of the attribute is

equivalent to maximizing the variance of the associated set of agent weights:

VarX (Ā,N, n) =
n
N

⇣

1� n
N

⌘ N
N � 1

(NVarW (Ā)) .

The next theorem specifies the properties of w (Ā) for VarX (Ā,N, n) to be maximal:

Theorem A.6 For a general vector of weights w (Ā) with 0  [w (Ā)]i  1,

8i 2 {1, . . . ,N}, and 1Tw (Ā) = 1, VarX (Ā,N, n) is maximal when [w (Ā)]i = 1 and

[w (Ā)]j = 0 8j 6= i.

When agent weights are required to sum to 1, maximizing the variance of W (Ā)

is equivalent to maximizing the sum of squared agent weights, ÂN
i=1 ([w (Ā)]i)

2,

with each weight bounded between 0 and 1. For any allocation of weights with
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[w (Ā)]i 2 [0, 1) for each i 2 {1, . . . ,N} and 1Tw (Ā) = 1, transferring e-mass to the

agent weight with the weakly highest value strictly increases the sum of squared

weights. It then follows that one agent will have weight 1 while all other agents will

have weight 0.

Corollaries A.1 - A.4 build on Theorem A.6 by specifying the necessary values

for agents’ weights in vectors wa,i (Ā), d�
w (Ā), and w• (Ā) so that the respective

variances of bFa,i (Ā,N, n), bFavg (Ā,N, n), and bF(•) (Ā,N, n) are maximal:

Corollary A.1 (to Theorem A.6) For the vector of weights wa,i (Ā), Var bFa,i (Ā,N, n) is

maximal when [wa,i (Ā)]j = 1 and [wa,i (Ā)]k = 0, 8k 6= j. If the graph features self-loops

for every node, Var bFa,i (Ā,N, n) is maximal when [wa,i (Ā)]j = 1� e, [wa,i (Ā)]i = e,

and [wa,i (Ā)]k = 0, 8k 6= j, with i 6= j and e > 0 small. If i = j, then [wa,i (Ā)]i = 1

and [wa,i (Ā)]k = 0, 8k 6= i.

Corollary A.2 (to Theorem A.6) (1) Consider G (A) undirected with no self-loops.

Var bFavg (Ā,N, n) is maximal when [d�
w (Ā)]j = 1 � 1

N and [d�
w (Ā)]k = 1

N

⇣

1
N�1

⌘

,

8k 6= j.

(2) Consider G (A) undirected with self-loops for every node. Var bFavg (Ā,N, n) is maximal

when [d�
w (Ā)]j = 1� e and [d�

w (Ā)]k =
e

N�1 , 8k 6= j and e > 0 small.

(3) Consider G (A) directed with no self-loops except for node j. Var bFavg (Ā,N, n) is

maximal when [d�
w (Ā)]j = 1 and [d�

w (Ā)]k = 0, 8k 6= j.

(4) Consider G (A) directed with self-loops for every node. Var bFavg (Ā,N, n) is maximal

when [d�
w (Ā)]j = 1� N�1

N e and [d�
w (Ā)]k =

e

N , 8k 6= j and e > 0 small.

For each case, the maximum allowable weight is accorded to a single agent, with

the remaining weight accorded to other agents, as needed, to satisfy the properties

of G (A). Figure A.6 plots the extremal graphs G (A) and their corresponding
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row-stochastic weighted adjacency matrices Ā for all four cases in Corollary A.2,

setting j = 15.

Corollary A.3 (to Theorem A.6) Consider G (A) undirected, connected, and aperiodic,

with symmetric edge weights for every node. If every node has a self-loop, Var bF(•) (Ā,N, n)

is maximal when [w• (Ā)]j =
N

3N�2 and [w• (Ā)]k =
2

3N�2 , 8k 6= j.

When G (A) is undirected, connected, and aperiodic, with symmetric edge weights

for every node, w• (Ā) = d
1Td . The maximal degree for a node is N, due to the

self-loop, and the minimal degree for a node is 2, since the graph is connected and

every node has a self-loop; Corollary A.3 then follows.

Corollary A.4 (to Theorem A.6) Consider G (A) directed, Eulerian, and aperiodic, with

symmetric edge weights for every node. If every node has a self-loop, Var bF(•) (Ā,N, n) is

maximal when [w• (Ā)]j =
N

3N�2 and [w• (Ā)]k =
2

3N�2 8k 6= j.

When G (A) is directed, Eulerian, and aperiodic, with symmetric edge weights for

every node, w• (Ā) = d+

1Td+ . The maximal out-degree for a node is N, due to the

self-loop, and the minimal out-degree for a node is 2, since the graph is strongly

connected and every node has a self-loop.

This last theorem characterizes those networks for which Var bF(•) (Ā,N, n)

is maximal given that the underlying graph G (A) is undirected, aperiodic, and

connected with N nodes and M non-self-loop edges, and agents assign equal weight

to each of their edges:

Theorem A.7 Consider the set of all undirected, aperiodic, connected graphs with N

nodes, M non-self-loop edges, symmetric edge weights, and either a self-loop for every

node or no self-loop for every node. Either the quasi-star graph QS(N,M) or the quasi-

complete graph QC(N,M), with or without self-loops for every node, attains the maximal
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Figure A.6: Networks G (A) and corresponding row-stochastic weighted adjacency matrices Ā for
cases (1)-(4) in Corollary A.2, setting j = 15.
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Var bF(•) (Ā,N, n). To determine which one maximizes Var bF(•) (Ā,N, n), select the

connected graph QS(N,M) or QC(N,M) with the larger sum of squared degrees arising

from non-self-loop edges.

For the family of undirected, aperiodic, connected graphs G (A) whose agents assign

equal weight to each of their edges, w• (Ā) = d
1Td has a closed form. Maximizing

Var bF(•) (Ā,N, n) is equivalent to maximizing VarW• (Ā), and when the number

of non-self-loop edges is fixed at M, maximizing VarW• (Ā) is equivalent to maxi-

mizing the sum of squared degrees arising from non-self-loop edges for all nodes in

the graph.

Maximizing the sum of squared degrees for simple graphs is a problem

studied in graph theory; it is equivalent to maximizing the number of adjacent

pairs of edges given that the simple graph has N nodes and M edges.8 There exist

threshold graphs that maximize the graph’s sum of squared degrees, of which

the quasi-complete graph, QC(N,M), and the quasi-star graph, QS(N,M), are

two classes of graphs.9 The sum of squared degrees for QC(N,M) and QS(N,M)

8The sum of squared degrees is also known as the first Zagreb index in mathematical chemistry.

9As defined by Ahlswede and Katona (1978), a simple quasi-complete graph with N nodes and
M edges is constructed as follows: Nodes i and j are connected for all i, j  k, i 6= j, and node k+ 1
is connected to nodes 1, 2, . . . , `, with k and ` uniquely determined by

M =

✓

k
2

◆

+ `, 0  ` < k.

Conceptually, QC(N,M) consists of the largest possible complete subgraph of nodes 1, . . . , k, with
edges then added from node k+ 1 to nodes 1, 2, . . . , ` until the graph has M total edges; any nodes
with indices higher than k+ 1 are isolates. If the largest possible complete subgraph of nodes 1, . . . , k
has M total edges, then node k+ 1 is also an isolate. Meanwhile, a simple quasi-star graph with N
nodes and M edges is constructed as follows: Connect the first N � k� 1 nodes with every other
node and connect node N � k with the first N � ` nodes, with k and ` uniquely determined by

✓

N
2

◆

� M =

✓

k
2

◆

+ `, 0  ` < k.

Conceptually, QS(N,M) consists of assigning the first N� k� 1 nodes the maximal degree and then
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can evaluate to the same quantity, so the graph that maximizes the variance of

bF(•) (Ā,N, n) given M non-self-loop edges is not necessarily unique.

In certain settings, maximizing variance for the distribution of possible local

relative frequencies of the attribute is equivalent to maximizing the variance of all

possible outcomes of the economy for a fixed aggregate feature:

Example A.2 (Maximizing Variance of the Aggregate Action) Consider a population

of N agents with aggregate action:

aagg (Ā,b,N, n) =
N

Â
i=1

ai (Ā,b,N, n) =
N

Â
i=1

h

ai bf (•) (Ā,b,N, n) + bi

i

,

with ai, bi 2 R. Let Ai (Ā,N, n) be a random variable with realization ai (Ā,b,N, n).

Then, the variance of the aggregate action, Var
⇣

ÂN
i=1 Ai (Ā,N, n)

⌘

, is maximal if and only

if the variance of the consensus frequency of the attribute, Var bF(•) (Ā,N, n), is maximal.

To see this equivalence, note that

Var

 

N

Â
i=1

Ai (Ā,N, n)

!

=
N

Â
i=1

Var Ai (Ā,N, n)

+
N

Â
i=1

N

Â
j=1

Cov
�

Ai (Ā,N, n) , Aj (Ā,N, n)
�

.

With,

Var Ai (Ā,N, n) =
1

|B (N, n)| Â
b(N,n)2B(N,n)

(ai (Ā,b,N, n)� EAi (Ā,N, n))2

= a

2
i Var bF

(•) (Ā,N, n) , and

adding edges from node N � k to nodes (N � k+ 1), (N � k+ 2), . . . , (N � `) until the graph has M
total edges.
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Cov
�

Ai (Ā,N, n) , Aj (Ā,N, n)
�

=
1

|B (N, n)|
⇥ Â

b(N,n)2B(N,n)
(ai (Ā,b,N, n)� EAi (Ā,N, n))

�

aj (Ā,b,N, n)� EAj (Ā,N, n)
�

= aiaj Var bF(•) (Ā,N, n) , it follows that

Var

 

N

Â
i=1

Ai (Ā,N, n)

!

=
⇣

Var bF(•) (Ā,N, n)
⌘

"

N

Â
i=1

a

2
i +

N

Â
i=1

N

Â
j=1

aiaj

#

.

A.7 Multiplicity Results

We characterize those vectors of agent weights and those matrices, Ā, that generate

identical distributions of possible local relative frequencies of the attribute and

therefore identical distributions of outcomes for the economy. Here, we assume

that each configuration of the binary-valued attribute is equally likely. There can

potentially be many vectors of agent weights that generate the same distribution

GX(Ā,N,n)(t). The next theorem captures this multiplicity:

Theorem A.8 Consider the general weighting vectors w (Ā) and w (Ā0) respectively

corresponding to the matrices Ā and Ā0. For all t 2 R and n 2 {0, . . . ,N} ✓ Z+,

GX(Ā0,N,n)(t) = GX(Ā,N,n)(t) if and only if [w (Ā0)]T = [w (Ā)]T R, where R is any

N ⇥ N permutation matrix.

If two weighting vectors are relatable by permutation, W (Ā0) = W (Ā) so

GX(Ā0,N,n)(t) = GX(Ā,N,n)(t).

We now proceed to establish conditions on specific network-derived vectors

of agent weights so that their corresponding distributions of possible local relative

frequencies of the attribute are identical:

Corollary A.5 (to Theorem A.8) For all matrices Ā, Ā0 and for every pair
⇣

w (Ā) ,GX(Ā,N,n)(t)
⌘

2
⇢

n⇣

wa,i (Ā) ,G
bFi(Ā,N,n)(t)

⌘oN

i=1
,
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⇢✓

w(q)
a,i (Ā) ,G

bF(q)i (Ā,N,n)
(t)
◆�N

i=1
,
⇣

d�
w (Ā) ,G

bFavg(Ā,N,n)(t)
⌘

,
✓

d� (q)
w (Ā) ,G

bF(q)avg(Ā,N,n)
(t)
◆

,
⇣

w• (Ā) ,G
bF(•)(Ā,N,n)(t)

⌘

�

,

GX(Ā0,N,n)(t) = GX(Ā,N,n)(t) if and only if [w (Ā0)]T = [w (Ā)]T R, where R is any

N ⇥ N permutation matrix.

As before, GX(Ā0,N,n)(t) = GX(Ā,N,n)(t) if and only if the corresponding vectors of

agent weights, w (Ā0) and w (Ā), are permutations of each other.

For each type of network-derived vector, we establish the necessary and

sufficient conditions on matrices Ā and Ā0 for generating identical distributions:

Theorem A.9 (1) For every i 2 {1, . . . ,N}, G
bFi(Ā0,N,n)(t) = G

bFi(Ā,N,n)(t) (respectively

G
bF(q)i (Ā0,N,n)

(t) = G
bF(q)i (Ā,N,n)

(t)) if and only if there exists a permutation matrix R such

that [Ā0]i⇤ = [Ā]i⇤ R (respectively,
⇥

(Ā0)q
⇤

i⇤ = [Āq]i⇤ R).

(2) G
bFavg(Ā0,N,n)(t) = G

bFavg(Ā,N,n)(t) (respectively G
bF(q)avg(Ā0,N,n)

(t) = G
bF(q)avg(Ā,N,n)

(t)) if

and only if there exists a permutation matrix R such that 1TĀ0 = 1TĀR (respectively

1T (Ā0)q = 1TĀqR).

(3) G
bF(•)(Ā0,N,n)(t) = G

bF(•)(Ā,N,n)(t) if and only if there exists a permutation matrix R

such that Ā0 and RTĀR share a unique dominant left eigenpair.

The next theorem establishes conditions on Ā and Ā0 for the multivariate

distributions G
bF(Ā0,N,n) (t) and G

bF(Ā,N,n) (t) to equal each other:

Theorem A.10 G
bF(Ā0,N,n) (t) = G

bF(Ā,N,n) (t) (respectively G
bF(q)(Ā0,N,n) (t) =

G
bF(q)(Ā,N,n) (t)) if and only if there exists a permutation matrix R such that Ā0 = ĀR

(respectively (Ā0)q = ĀqR).

Multivariate distributions G
bF(Ā0,N,n) (t) and G

bF(Ā,N,n) (t) (respectively G
bF(q)(Ā0,N,n) (t)

and G
bF(q)(Ā,N,n) (t)) equal each other if and only if the set of N columns in Ā0 (respec-

tively (Ā0)q) equals the set of N columns in Ā (respectively Āq). In Theorem A.10,
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agent index matters when establishing conditions for identical multivariate distribu-

tions.

Now suppose that an agent’s index is irrelevant. We can then establish

necessary and sufficient restrictions on Ā and Ā0 for their affiliated multivariate

system-level distributions, G
bF(Ā,N,n) (t) and G

bF(Ā0,N,n) (t), to equal each other, ig-

noring agent index. Define bFS (Ā,N, n) as the multivariate random variable with

realization Sbf (Ā,b,N, n) for permutation matrix S, and let bF(q)S (Ā,N, n) be the

multivariate random variable with realization Sbf(q) (Ā,b,N, n):

Theorem A.11 G
bF(Ā0,N,n) (t) = G

bFS(Ā,N,n) (t) (respectively G
bF(q)(Ā0,N,n) (t) =

G
bF(q)S (Ā,N,n)

(t)) if and only if there exist permutation matrices R, S such that Ā0 = SĀR

(respectively (Ā0)q = SĀqR).

When Ā0 = ĀR for permutation matrix R, the probability that bF (Ā0,N, n)  t equals

the probability that bF (Ā,N, n)  t because the number of configurations b (N, n) 2
B (N, n) for which Ā0b (N, n)  t equals the number of configurations b (N, n) 2
B (N, n) for which Āb (N, n)  t. When Ā0 = SĀR for permutation matrices R,S,

the number of configurations b (N, n) 2 B (N, n) for which Ā0b (N, n)  t equals

the number of configurations b (N, n) 2 B (N, n) for which Āb (N, n)  S�1 t.

A.8 Sensitivity of the Distribution to Network Pertur-

bation

We proceed to conduct sensitivity analysis. We study how a perturbation to agents’

interaction network affects the distribution of possible local relative frequencies of

the attribute via its effects on the relevant network-derived vector of agent weights.

The next theorem shows how a perturbation to Ā alters agents’ weights:
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Theorem A.12 Consider the perturbation Ā (e) = Ā + e E about the irreducible, row-

stochastic matrix Ā, in which E1 = 0 and e is a scalar small enough that Ā (e) has all

non-negative entries. Then,

wT
• (e) ⇡ wT

• + e

 

∂wT
• (e)
∂e

�

�

�

�

�

e=0

!

,

where ∂wT
•(e)
∂e

�

�

�

�

e=0
= wT

•EZ, Z =
�

I� Ā+ 1pT��1, and p is any N ⇥ 1 vector such that

pT1 6= 0. Now letting Ā simply be row-stochastic,

⇥

d�
w (e)

⇤T
=
⇥

d�
w
⇤T

+
e

N

⇣

1TE
⌘

exactly; and for every i 2 {1, . . . ,N},

[wa,i (e)]
T = [wa,i]

T + e [E]i⇤

exactly. Next, consider the perturbation Āq (e) = Āq + eE about the row-stochastic matrix

Āq, in which E1 = 0 and e is a scalar small enough that Āq (e) has all non-negative entries.

Then,
h

d� (q)
w (e)

iT
=
h

d� (q)
w

iT
+

e

N

⇣

1TE
⌘

exactly, and for every i 2 {1, . . . ,N},
h

w(q)
a,i (e)

iT
=
h

w(q)
a,i

iT
+ e [E]i⇤

exactly.

The matrix perturbation preserves row-stochasticity. The effect of the perturbation to

Ā (respectively Āq) on d�
w (Ā) and wa,i (Ā) (respectively d� (q)

w (Ā) and w(q)
a,i (Ā)) for

all i 2 {1, . . . ,N} is exact, but its effect on w• (Ā) is approximate. The perturbation

effect ∂wT
•(e)
∂e

�

�

�

�

e=0
can be computed by applying existing work on perturbation theory

for finite Markov chains (Conlisk, 1985) due to the similarity between a Markov
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chain’s stationary distribution and w• (Ā). Matrix Z is termed a fundamental

matrix (Kemeny and Snell, 1960).10 The next corollary unambiguously signs the

change in certain elements of w• (Ā) following perturbation to Ā:

Corollary A.6 (to Theorem A.12) (1) For a single row i, if [E]ij > 0 and [E]ik < 0, with

[E]ij + [E]ik = 0 and all other entries in E equal to zero, then

∂

⇥

wT
• (e)

⇤

j

∂e

�

�

�

�

�

e=0

> 0 and
∂

⇥

wT
• (e)

⇤

k
∂e

�

�

�

�

�

e=0

< 0.

(2) For a single row i, if [E]ij > 0
⇣

[E]ij < 0
⌘

and [E]ik  0 ([E]ik � 0) for all k 6= j, with

Ân
k=1 [E]ik = 0 and all other entries in E equal to zero, then

∂

⇥

wT
• (e)

⇤

j

∂e

�

�

�

�

�

e=0

> 0

 

∂

⇥

wT
• (e)

⇤

j

∂e

�

�

�

�

�

e=0

< 0

!

.

If there exists a perturbation in which agent i transfers weight to agent j from

agent k, then agent j’s weight under consensus unambiguously increases, and agent

k’s weight under consensus unambiguously decreases. If there exists a separate

perturbation in which agent i transfers weight to agent j from all other agents k 6= j,

then the weight of agent j under consensus unambiguously increases. This second

case arises when agent i adds a directed linkage to agent j and equally weights each

of his out-edges.11

The effects of network perturbation on GX(Ā,N,n) (t) can be characterized as

follows:

Theorem A.13 Consider the perturbation Ā (e) = Ā+ e E about row-stochastic matrix

10The first part of Theorem A.12, the effect of a matrix perturbation on w• (Ā), is similar to
Theorem 6 in Golub and Jackson (2007), but the method of proof differs.

11Corollary A.6 is similar to Corollaries 1-2 in Golub and Jackson (2007), but the method of proof
differs.
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Ā, in which E1 = 0 and e is a scalar small enough that Ā (e) has all non-negative entries.

Then,

EX (Ā (e) ,N, n) = EX (Ā,N, n) =
n
N
,

VarX (Ā (e) ,N, n) =
n
N

⇣

1� n
N

⌘ N
N � 1

(NVarW (e)) , and

J (Ā (e) ,N, n, t) = F (t)� H2 (t) f (t)C1N�1/2 SkewW (e)

� H3 (t) f (t)


C2

⇣

N�1 Excess KurtosisW (e)
⌘

� 1
4N

�

� H5 (t) f (t)C3N�1 (SkewW (e))2 ,

with C1, C2, C3, f (t), and Hi (t) f (t) defined in Theorem 1.13, bwi (e) =
[w(e)]i�EW(e)p

NVarW(e)
,

and specific cases of perturbed weights w (e) listed in Theorem A.12.

If the perturbed vector of weights is w• (Ā), we assume that Ā is primitive; oth-

erwise, this assumption is not necessary. Following perturbation to Ā, the first

moment of the distribution remains fixed at n
N . If VarW (e) > VarW (0), then the

second moment of X (Ā,N, n) increases after perturbation. Changes to GX(Ā,N,n) (t)

depend on how the perturbation to Ā affects the variance and higher-order moments

of the set of agent weights.

A.9 Section 1.7 Examples

Example 1.7 (First Two Moments of X
⇣

Ā,N,n, (gi)
N
i=1

⌘

, Q = 1) Consider an eco-

nomic system with N agents. When Q = 1, so that fi = r1 for every agent i 2 {1, . . . ,N},
EX

⇣

Ā,N, n, (gi)
N
i=1

⌘

= EX (Ā,N, n) andVarX
⇣

Ā,N, n, (gi)
N
i=1

⌘

= VarX (Ā,N, n),

where X (Ā,N, n) is the random variable of interest when every configuration

b (N, n) 2 B (N, n) is equally likely.

253



www.manaraa.com

When Q = 1, we know that every agent i 2 {1, . . . ,N} has the same condi-

tional probability that Bi = 1, and every configuration b (N, n) 2 B (N, n) is equally

likely. From Theorem 1.17,
N

Â
i=1

[bµ]1 = n,

so [bµ]1 =
n
N and

EX
⇣

Ā,N, n, (gi)
N
i=1

⌘

=
N

Â
i=1

[w (Ā)]i [µ]i =
N

Â
i=1

[w (Ā)]i [bµ]1 =
n
N
.

Meanwhile, [z]i = [bµ]1 (1� [bµ]1) =
n
N
�

1� n
N
�

, and 1Tz = n
N
�

1� n
N
�

N. With

S =
N

N � 1

 

diag z � zzT

1Tz

!

,

[S]ij =
N

N � 1

 

� [z]i [z]j
1Tz

!

= [S]ji , for i 6= j, and

[S]ii =
N

N � 1

 

[z]i �
[z]i [z]j
1Tz

!

=
N

N � 1
[z]i + [S]ij .

Now,

VarX
⇣

Ā,N, n, (gi)
N
i=1

⌘

= [w (Ā)]T S [w (Ā)]

=
N

Â
i=1

([w (Ā)]i)
2 [S]ii + 2

N

Â
i=1

N

Â
j=i+1

[w (Ā)]i [w (Ā)]j [S]ij

=
N

Â
i=1

([w (Ā)]i)
2
✓

N
N � 1

[z]i + [S]ij

◆

+ 2
N

Â
i=1

N

Â
j=i+1

[w (Ā)]i [w (Ā)]j [S]ij

=

"

N

Â
i=1

([w (Ā)]i)
2
✓

N
N � 1

[z]i

◆

#

+ ([w (Ā)]1 + [w (Ā)]2 + · · ·+ [w (Ā)]N)
2 [S]ij

=

"

N

Â
i=1

([w (Ā)]i)
2
✓

N
N � 1

[z]i

◆

#

+ [S]ij

=
N

N � 1
n
N

⇣

1� n
N

⌘



([w (Ā)]1)
2 + ([w (Ā)]2)

2 + · · ·+ ([w (Ā)]N)
2 � 1

N

�

=
n
N

⇣

1� n
N

⌘ N
N � 1

(NVarW (Ā))
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because

NVarW (Ā) = N

 

1
N

N

Â
i=1

✓

[w (Ā)]i �
1
N

◆2
!

=

 

N

Â
i=1

([w (Ā)]i)
2
!

� 1
N
.

Therefore, EX
⇣

Ā,N, n, (gi)
N
i=1

⌘

= n
N and VarX

⇣

Ā,N, n, (gi)
N
i=1

⌘

=

n
N
�

1� n
N
� N

N�1 (NVarW (Ā)). We have thus recovered the first two moments of

X
⇣

Ā,N, n, (gi)
N
i=1

⌘

when every configuration b (N, n) is uniformly selected from

B (N, n).

Figure A.7: Graph G (A1) for Example A.3 (left) and graph G (A2) for Example A.4 (right).

Example A.3 (First Two Moments of bF
avg

⇣

Ā,N, n, (g
i

)N
i=1

⌘

, Q = 2) Consider an

economy with N = 4 agents and underlying network G (A1) featured on the left side

of Figure A.7. Assume that agents assign an equal weight to each of their out-edges.

There are Q = 2 categories of agents. In category 1, f1 = f2 = f3 = r1 = 1
5 , and in

category 2, f4 = r2 = 1
3 . Given that f = 0.25, EbFavg

⇣

Ā1,N, n, (gi)
N
i=1

⌘

⇡ 0.302 and

Std. Dev. bFavg
⇣

Ā1,N, n, (gi)
N
i=1

⌘

⇡ 0.180.
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We set k = 2, and computing the odds ratio, by1, we have:

b

y1 =

r1
1�r1

r2
1�r2

=

1/5
1�1/5
1/3

1�1/3

=
1
2
.

To compute the first two moments of bFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

, we must solve for the

following six variables: [bµ]1, [bµ]2,
h

bS
i

11
,
h

bS
i

22
,
h

bS
i

12
, and

h

bSCov
i

1
. bSCov is a Q ⇥ 1

vector whose q

th element equals Cov
�

Bi, Bj
�

for agent i and agent j both in the same

category q. From bµ, bS, and
h

bSCov
i

1
, we can construct µ and S, and given d�

w (Ā1),

we can determine the first two moments of bFavg
⇣

Ā1,N, n, (gi)
N
i=1

⌘

.

Following Theorem 1.17, the system of six equations is below:

(1) 3 [bµ]1 + [bµ]2 = n

(2)
1
2
=

[bµ]1 (1� [bµ]2)�
h

bS
i

12

(1� [bµ]1) [bµ]2 �
h

bS
i

12

(3)
h

bS
i

11
=

N
N � 1

 

[bµ]1 (1� [bµ]1)�
([bµ]1 (1� [bµ]1))

2

3 [bµ]1 (1� [bµ]1) + [bµ]2 (1� [bµ]2)

!

(4)
h

bS
i

12
= � N

N � 1

✓

[bµ]1 (1� [bµ]1) [bµ]2 (1� [bµ]2)
3 [bµ]1 (1� [bµ]1) + [bµ]2 (1� [bµ]2)

◆

(5)
h

bS
i

22
=

N
N � 1

 

[bµ]2 (1� [bµ]2)�
([bµ]2 (1� [bµ]2))

2

3 [bµ]1 (1� [bµ]1) + [bµ]2 (1� [bµ]2)

!

(6)
h

bSCov
i

1
= � N

N � 1

 

([bµ]1 (1� [bµ]1))
2

3 [bµ]1 (1� [bµ]1) + [bµ]2 (1� [bµ]2)

!

.
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Then,

µ =

0

B

B

B

B

B

B

B

@

[bµ]1

[bµ]1

[bµ]1

[bµ]2

1

C

C

C

C

C

C

C

A

and S =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

h

bS
i

11

h

bSCov
i

1

h

bSCov
i

1

h

bS
i

12

h

bSCov
i

1

h

bS
i

11

h

bSCov
i

1

h

bS
i

12

h

bSCov
i

1

h

bSCov
i

1

h

bS
i

11

h

bS
i

12

h

bS
i

12

h

bS
i

12

h

bS
i

12

h

bS
i

22

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

With [bµ]1 � 0 and [bµ]2 � 0, we find that

[bµ]1 ⇡ 0.202,

[bµ]2 ⇡ 0.395,
h

bS
i

11
⇡ 0.167,

h

bS
i

22
⇡ 0.213,

h

bS
i

12
⇡ �0.0711, and

h

bSCov
i

1
⇡ �0.0479.

With d�
w (Ā1) ⇡

✓

0.0625 0.146 0.271 0.521
◆T

,

EbFavg
⇣

Ā1,N, n, (gi)
N
i=1

⌘

⇡ 0.302,

Var bFavg
⇣

Ā1,N, n, (gi)
N
i=1

⌘

⇡ 0.0325, and

Std. Dev. bFavg
⇣

Ā1,N, n, (gi)
N
i=1

⌘

⇡ 0.180.

EbFavg
⇣

Ā1,N, n, (gi)
N
i=1

⌘

⇡ 0.302 > 0.25 = EbFavg (Ā1,N, n), the mean of the

distribution when n = 1 and every configuration is equally likely.
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Example A.4 (First Two Moments of bF(•)
⇣

Ā,N, n, (g
i

)N
i=1

⌘

, Q = 3) Consider an

economy with N = 15 agents and underlying network G (A2) featured on the right side

of Figure A.7. Assume that agents assign an equal weight to each of their edges. There

are Q = 3 categories of agents. In category 1, fi = r1 = 2
3 for agents i 2 {1, . . . , 5}; in

category 2, fi = r2 = 2
5 for agents i 2 {6, . . . , 10}; and in category 3, fi = r3 = 1

4 for

agents i 2 {11, . . . , 15}. Given that f = 0.20, EbF(•)
⇣

Ā2,N, n, (gi)
N
i=1

⌘

⇡ 0.238 and

Std. Dev. bF(•)
⇣

Ā2,N, n, (gi)
N
i=1

⌘

⇡ 0.0406.

We set k = 3, and computing the odds ratios by1 and by2, we have:

b

y1 =

r1
1�r1

r3
1�r3

=

2/3
1�2/3
1/4

1�1/4

= 6 and b

y2 =

r2
1�r2

r3
1�r3

=

2/5
1�2/5
1/4

1�1/4

= 2.

With Q = 3 categories and five agents in each category, there are 2Q + (Q
2 ) +

ÂQ
q=1 1s

q

>1 = 12 variables and 12 equations. Following Theorem 1.17, the system of
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twelve equations is below:

(1) 5 [bµ]1 + 5 [bµ]2 + 5 [bµ]3 = n

(2) 6 =
[bµ]1 (1� [bµ]3)�

h

bS
i

13

(1� [bµ]1) [bµ]3 �
h

bS
i

13

(3) 2 =
[bµ]2 (1� [bµ]3)�

h

bS
i

23

(1� [bµ]2) [bµ]3 �
h

bS
i

23

(4)
h

bS
i

11
=

N
N � 1

 

[bµ]1 (1� [bµ]1)�
([bµ]1 (1� [bµ]1))

2

M

!

(5)
h

bS
i

22
=

N
N � 1

 

[bµ]2 (1� [bµ]2)�
([bµ]2 (1� [bµ]2))

2

M

!

(6)
h

bS
i

33
=

N
N � 1

 

[bµ]3 (1� [bµ]3)�
([bµ]3 (1� [bµ]3))

2

M

!

(7)
h

bS
i

12
= � N

N � 1

✓

[bµ]1 (1� [bµ]1) [bµ]2 (1� [bµ]2)
M

◆

(8)
h

bS
i

13
= � N

N � 1

✓

[bµ]1 (1� [bµ]1) [bµ]3 (1� [bµ]3)

M
◆

(9)
h

bS
i

23
= � N

N � 1

✓

[bµ]2 (1� [bµ]2) [bµ]3 (1� [bµ]3)

M
◆

(10)
h

bSCov
i

1
= � N

N � 1

 

([bµ]1 (1� [bµ]1))
2

M

!

(11)
h

bSCov
i

2
= � N

N � 1

 

([bµ]2 (1� [bµ]2))
2

M

!

(12)
h

bSCov
i

3
= � N

N � 1

 

([bµ]3 (1� [bµ]3))
2

M

!

,

where M = 5 [bµ]1 (1� [bµ]1) + 5 [bµ]2 (1� [bµ]2) + 5 [bµ]3 (1� [bµ]3). With bµ � 0, we

find that

[bµ]1 ⇡ 0.370, [bµ]2 ⇡ 0.151, [bµ]3 ⇡ 0.0791,
h

bS
i

11
⇡ 0.223,

h

bS
i

22
⇡ 0.129,

h

bS
i

33
⇡ 0.0754,
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h

bS
i

12
⇡ �0.0147,

h

bS
i

13
⇡ �0.00838,

h

bS
i

23
⇡ �0.00461,

h

bSCov
i

1
⇡ �0.0268,

h

bSCov
i

2
⇡ �0.00810, and

h

bSCov
i

3
⇡ �0.00262.

From the Q ⇥ 1 vector bµ and the Q ⇥ Q matrix bS, we can construct the N ⇥ 1

vector µ and the N ⇥ N matrix S. Given the vector of consensus weights w• (Ā2),

EbF(•)
⇣

Ā2,N, n, (gi)
N
i=1

⌘

⇡ 0.238,

Var bF(•)
⇣

Ā2,N, n, (gi)
N
i=1

⌘

⇡ 0.00165, and

Std. Dev. bF(•)
⇣

Ā2,N, n, (gi)
N
i=1

⌘

⇡ 0.0406.

EbF(•)
⇣

Ā2,N, n, (gi)
N
i=1

⌘

⇡ 0.238 > 0.20 = EbF(•) (Ā2,N, n), the mean of the

distribution when n = 3 and every configuration is equally likely.

Std. Dev. bF(•)
⇣

Ā2,N, n, (gi)
N
i=1

⌘

⇡ 0.0406 > 0.0404 ⇡ Std. Dev. bF(•) (Ā2,N, n), the

standard deviation of the distribution when n = 3 and every configuration is equally

likely. When agents differ in their probabilities of having the attribute’s unit value,

the mean of the probability distribution of possible local relative frequencies of

the attribute can potentially markedly diverge from the attribute’s global relative

frequency.

Example 1.4 (Configurations Unequally Likely, by1 = 9.42) Suppose that media out-

lets engage in “fair and balanced” reporting, providing equal air time (or equal space for hard-

copy publications) to those agents who are employed and unemployed. Setting r1 = 0.50 and

r2 = 0.096, EbFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

= 0.194 and Std. Dev. bFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

=

0.00452.

Following Theorem 1.17, to compute the first two moments of

bFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

for a general by1, we must solve for seven variables: [bµ]1, [bµ]2,
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h

bS
i

11
,
h

bS
i

22
,
h

bS
i

12
,
h

bSCov
i

1
, and

h

bSCov
i

2
. The system of seven equations is below:

(1) x [bµ]1 + (N � x) [bµ]2 = n

(2) b

y1 =
[bµ]1 (1� [bµ]2)�

h

bS
i

12

(1� [bµ]1) [bµ]2 �
h

bS
i

12

(3)
h

bS
i

11
=

N
N � 1

 

[bµ]1 (1� [bµ]1)�
([bµ]1 (1� [bµ]1))

2

M

!

(4)
h

bS
i

12
= � N

N � 1

✓

[bµ]1 (1� [bµ]1) [bµ]2 (1� [bµ]2)
M

◆

(5)
h

bS
i

22
=

N
N � 1

 

[bµ]2 (1� [bµ]2)�
([bµ]2 (1� [bµ]2))

2

M

!

(6)
h

bSCov
i

1
= � N

N � 1

 

([bµ]1 (1� [bµ]1))
2

M

!

(7)
h

bSCov
i

2
= � N

N � 1

 

([bµ]2 (1� [bµ]2))
2

M

!

,

with M = x ([bµ]1 (1� [bµ]1)) + (N � x) ([bµ]2 (1� [bµ]2)). Then,

EbFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

= [bµ]1

0

B

B

@

Â
i2{1,...,N}
s.t. fi=r1

⇥

d�
w (Ā)

⇤

i

1

C

C

A

+ [bµ]2

0

B

B

@

Â
i2{1,...,N}
s.t. fi=r2

⇥

d�
w (Ā)

⇤

i

1

C

C

A

and

Var bFavg
⇣

Ā,N, n, (gi)
N
i=1

⌘

=
⇥

d�
w (Ā)

⇤T
S
⇥

d�
w (Ā)

⇤

,
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with the N ⇥ N matrix

S =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 2 · · · x x+ 1 x+ 2 · · · N

1
h

bS
i

11

h

bSCov
i

1
· · ·

h

bSCov
i

1

h

bS
i

12

h

bS
i

12
· · ·

h

bS
i

12

2
h

bSCov
i

1

h

bS
i

11

h

bSCov
i

1

h

bS
i

12

h

bS
i

12
· · ·

h

bS
i

12
...

... . . . ...
...

...

x
h

bSCov
i

1

h

bSCov
i

1

h

bS
i

11

h

bS
i

12

h

bS
i

12
· · ·

h

bS
i

12

x+ 1
h

bS
i

12

h

bS
i

12
· · ·

h

bS
i

12

h

bS
i

22

h

bSCov
i

2
· · ·

h

bSCov
i

2

x+ 2
h

bS
i

12

h

bS
i

12
· · ·

h

bS
i

12

h

bSCov
i

2

h

bS
i

22

h

bSCov
i

2
...

...
... . . . ...

... . . .

N
h

bS
i

12

h

bS
i

12
· · ·

h

bS
i

12

h

bSCov
i

2

h

bSCov
i

2

h

bS
i

22

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

With [bµ]1 � 0 and [bµ]2 � 0, we find that

[bµ]1 ⇡ 0.500, [bµ]2 ⇡ 0.0959,

h

bS
i

11
⇡ 0.250,

h

bS
i

22
⇡ 0.0867,

h

bS
i

12
⇡ �1.82⇥ 10�9,

h

bSCov
i

1
⇡ �5.24⇥ 10�9, and

h

bSCov
i

2
⇡ �6.30⇥ 10�10.

A.10 Section 1.8 Examples

Example A.5 (Distribution of Agent i’s Action, Affine Rule) Suppose that agent i’s

action is: ai (Ā,b,N, n) = ai bfi (Ā,b,N, n) + bi. If each configuration of the attribute is

equally likely to occur, EAi (Ā,N, n) = ai
n
N + bi and Var Ai (Ā,N, n) =

a

2
i
n
N
�

1� n
N
� N

N�1 NVarWa,i (Ā). To compute the upper and lower bounds on the support

of Ai (Ā,N, n), construct the ordered multiset {ws}Ns=1 from the elements of wa,i (Ā) so
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that ws  ws0 whenever s  s0. Assuming that ai > 0,

max supp Ai (Ā,N, n) = ai

 

N

Â
s=N�n+1

ws

!

+ bi, and

min supp Ai (Ā,N, n) = ai

 

n

Â
s=1

ws

!

+ bi.

Provided that condition (c) of Theorem 1.13 holds,

GAi(Ā,N,n)(t) ⇡ J

0

B

@

Ā,N, n,
t� aiEbFi (Ā,N, n)� bi

ai

⇣

Var bFi (Ā,N, n)
⌘1/2

1

C

A

,

with J (·) defined in Theorem 1.13 and bwj =
[wa,i(Ā)]j�EWa,i(Ā)

(NVarWa,i(Ā))
1/2 =

[wa,i(Ā)]j� 1
N

⇣

ÂN
k=1([wa,i(Ā)]k� 1

N )
2⌘1/2

.

When agent i’s action linearly depends on bfi (Ā,b,N, n), we can solve for GAi(Ā,N,n) (t)

for every feasible population size, network topology, and prevalence of the attribute

in the population.

Example A.6 (Distribution of Agent i’s Action, Nonlinear Rule) Suppose that agent i’s

action is: ai (Ā,b,N, n) = ai log bf
(q)
i (Ā,b,N, n) + bi. Assume that n � 1 and

w(q)
a,i (Ā) > 0 element-wise, so that log bf (q)i (Ā,b,N, n) > �•. To compute the upper and

lower bounds of Ai (Ā,N, n), construct the ordered multiset {ws}Ns=1 from the elements of

w(q)
a,i (Ā) so that ws  ws0 whenever s  s0. Assuming that ai > 0,

max supp Ai (Ā,N, n) = ai log

 

N

Â
s=N�n+1

ws

!

+ bi, and

min supp Ai (Ā,N, n) = ai log

 

n

Â
s=1

ws

!

+ bi.

Provided that condition (c) of Theorem 1.13 holds and each configuration is equally likely,
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CDF GAi(Ā,N,n)(t) is as follows:

GAi(Ā,N,n)(t) ⇡ J

0

B

@

Ā,N, n,
exp

h

1
ai
(t� bi)

i

� EbF(q)i (Ā,N, n)
⇣

Var bF(q)i (Ā,N, n)
⌘1/2

1

C

A

,

with J (·) defined in Theorem 1.13 and

bwj =

h

w(q)
a,i (Ā)

i

j
� EW(q)

a,i (Ā)

⇣

NVarW(q)
a,i (Ā)

⌘1/2 =

h

w(q)
a,i (Ā)

i

j
� 1

N
✓

ÂN
k=1

⇣h

w(q)
a,i (Ā)

i

k
� 1

N

⌘2
◆1/2 .

Then,

EAi (Ā,N, n) ⇡
Z •

�•
t dJ

0

B

@

Ā,N, n,
exp

h

1
ai
(t� bi)

i

� EbF(q)i (Ā,N, n)
⇣

Var bF(q)i (Ā,N, n)
⌘1/2

1

C

A

and

Var Ai (Ā,N, n) ⇡

2

6

4

Z •

�•
t2 dJ

0

B

@

Ā,N, n,
exp

h

1
ai
(t� bi)

i

� EbF(q)i (Ā,N, n)
⇣

Var bF(q)i (Ā,N, n)
⌘1/2

1

C

A

3

7

5

� (EAi (Ā,N, n))2 .

When agent i’s action ai (Ā,b,N, n) nonlinearly depends on bfi (Ā,b,N, n), provided

that the action is invertible in bfi (Ā,b,N, n), we can solve for GAi(Ā,N,n) (t) for every

feasible population size, network topology, and prevalence of the attribute.

Example A.7 (Distribution of Aggregate Action, Affine Rule with Common Co-

efficient) Suppose that agent i’s action is: ai (Ā,b,N, n) = a

bfi (Ā,b,N, n) + bi,

8i 2 {1, . . . ,N}, so aagg (Ā,b,N, n) = aN bfavg (Ā,b,N, n) + 1Tb. Then, assuming that

each configuration is equally likely, EAagg (Ā,N, n) = an+ 1Tb andVar Aagg (Ā,N, n) =

a

2N2 n
N
�

1� n
N
� N

N�1NVarD�
w (Ā). To compute the upper and lower bounds on the sup-
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port of Aagg (Ā,N, n), construct the ordered multiset {ws}Ns=1 from the elements of d�
w (Ā)

so that ws  ws0 whenever s  s0. Assuming that a > 0,

max supp Aagg (Ā,N, n) = aN

 

N

Â
s=N�n+1

ws

!

+ 1Tb, and

min supp Aagg (Ā,N, n) = aN

 

n

Â
s=1

ws

!

+ 1Tb.

Provided that condition (c) of Theorem 1.13 holds,

GAagg(Ā,N,n)(t) ⇡ J

0

B

@

Ā,N, n,
t� aNEbFavg (Ā,N, n)� 1Tb

aN
⇣

Var bFavg (Ā,N, n)
⌘1/2

1

C

A

,

with J (·) defined in Theorem 1.13 and bwi =
[d�

w (Ā)]i�ED�
w (Ā)

(NVarD�
w (Ā))

1/2 =
[d�

w (Ā)]i� 1
N

✓

ÂN
j=1

⇣

[d�
w (Ā)]j� 1

N

⌘2
◆1/2 .

We now relax the assumption that every agent’s affine action has a common

coefficient premultiplying bfi (Ā,b,N, n). We are able to show that we can still solve

for the distribution of possible aggregate actions, GAagg(Ā,N,n) (t):

Example A.8 (Distribution of Aggregate Action, Affine Rule, No Common Coef-

ficient) Suppose that agent i’s action is: ai (Ā,b,N, n) = ai bfi (Ā,b,N, n) + bi,

8i 2 {1, . . . ,N}. The aggregate action is then:

aagg (Ā,b,N, n) =
N

Â
i=1

ai [Ā]i⇤ b (N, n) + 1Tb.
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Define matrix bA with entry
h

bA
i

ij
= ai [Ā]ij so that

h

bA
i

i⇤
= ai [Ā]i⇤. It follows that:

aagg (Ā,b,N, n) =
N

Â
i=1

h

bA
i

i⇤
b (N, n) + 1Tb

= 1T bAb (N, n) + 1Tb

= (a1 + · · ·+ aN)

✓

1
a1 + · · ·+ aN

◆

1T bAb (N, n) + 1Tb

= (a1 + · · ·+ aN)
h

bd�
w

⇣

bA
⌘iT

b (N, n) + 1Tb,

where
h

bd�
w

⇣

bA
⌘iT

=
⇣

1
a1+···+aN

⌘

1T bA. Observe that
h

bd�
w

⇣

bA
⌘iT

1 = 1.

Define bfavg
⇣

bA,b,N, n
⌘

=
h

bd�
w

⇣

bA
⌘iT

b (N, n), and random variable bFavg
⇣

bA,N, n
⌘

with realization bfavg
⇣

bA,b,N, n
⌘

=
h

bd�
w

⇣

bA
⌘iT

b (N, n). The aggregate action becomes:

aagg (Ā,b,N, n) =
⇣

1Ta
⌘

bfavg
⇣

bA,b,N, n
⌘

+ 1Tb, and

Aagg (Ā,N, n) =
⇣

1Ta
⌘

bFavg
⇣

bA,N, n
⌘

+ 1Tb,

Assuming that each configuration of the attribute is equally likely,

EAagg (Ā,N, n) =
⇣

1Ta
⌘

EbFavg
⇣

bA,N, n
⌘

+ 1Tb =
⇣

1Ta
⌘ n
N

+ 1Tb, and

Var Aagg (Ā,N, n) =
⇣

1Ta
⌘2

Var bFavg
⇣

bA,N, n
⌘

=
⇣

1Ta
⌘2 n

N

⇣

1� n
N

⌘ N
N � 1

NVar bD�
w

⇣

bA
⌘

,

where Var bD�
w

⇣

bA
⌘

= 1
N ÂN

i=1

⇣h

bd�
w

⇣

bA
⌘i

i
� 1

N

⌘2
. To compute the upper and lower

bounds on the support of Aagg (Ā,N, n), construct the ordered multiset {ws}Ns=1 from

the elements of bd�
w

⇣

bA
⌘

so that ws  ws0 whenever s  s0. Assuming that ai > 0
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8i 2 {1, . . . ,N},

max supp Aagg (Ā,N, n) =
⇣

1Ta
⌘

 

N

Â
s=N�n+1

ws

!

+ 1Tb, and

min supp Aagg (Ā,N, n) =
⇣

1Ta
⌘

 

n

Â
s=1

ws

!

+ 1Tb.

Provided that condition (c) of Theorem 1.13 holds,

GAagg(Ā,N,n)(t) ⇡ J

0

B

@

Ā,N, n,
t� �1Ta

�

EbFavg
⇣

bA,N, n
⌘

� 1Tb

(1Ta)
⇣

Var bFavg
⇣

bA,N, n
⌘⌘1/2

1

C

A

,

with J (·) defined in Theorem 1.13 and

bwi =

h

bd�
w

⇣

bA
⌘i

i
� E bD�

w

⇣

bA
⌘

⇣

NVar bD�
w

⇣

bA
⌘⌘1/2 =

h

bd�
w

⇣

bA
⌘i

i
� 1

N
 

ÂN
j=1

✓

h

bd�
w

⇣

bA
⌘i

j
� 1

N

◆2
!1/2 .

Example A.9 (Distribution of Aggregate Action, Threshold Rule) Consider a sys-

tem in which the form of each agent’s action is a threshold rule:

ai (Ā,b,N, n) =

8

>

>

<

>

>

:

bi if bf (•) (Ā,b,N, n) � a

0 if bf (•) (Ā,b,N, n) < a

.

The aggregate action is as follows:

aagg (Ā,b,N, n) =

8

>

>

<

>

>

:

1Tb if bf (•) (Ā,b,N, n) � a

0 if bf (•) (Ā,b,N, n) < a

,

and

Aagg (Ā,N, n) =

8

>

>

<

>

>

:

1Tb with probability 1� G
bF(•)(Ā,N,n)(a)

0 with probability G
bF(•)(Ā,N,n)(a)

.
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If each configuration is equally likely,

EAagg (Ā,N, n) =
⇣

1Tb
⌘ ⇣

1� G
bF(•)(Ā,N,n)(a)

⌘

, and

Var Aagg (Ā,N, n) = E
⇥

Aagg (Ā,N, n)
⇤2 � �EAagg (Ā,N, n)

�2

=
⇣

1Tb
⌘2 ⇣

G
bF(•)(Ā,N,n)(a)

⌘ ⇣

1� G
bF(•)(Ā,N,n)(a)

⌘

.

To compute the upper and lower bounds on the support of Aagg (Ā,N, n), construct the

ordered multiset {ws}Ns=1 from the elements of w• (Ā) so that ws  ws0 whenever s  s0.

Assuming that 1Tb > 0,

max supp Aagg (Ā,N, n) =

8

>

>

<

>

>

:

1Tb if ÂN
s=N�n+1 ws � a

0 otherwise
, and

min supp Aagg (Ā,N, n) =

8

>

>

<

>

>

:

0 if Ân
s=1 ws < a

1Tb otherwise
.

Provided that condition (c) of Theorem 1.13 holds,

Aagg (Ā,N, n) ⇡

8

>

>

>

<

>

>

>

:

1Tb with probability 1� J
✓

Ā,N, n, a�EbF(•)(Ā,N,n)

(Var bF(•)(Ā,N,n))
1/2

◆

0 with probability J
✓

Ā,N, n, a�EbF(•)(Ā,N,n)

(Var bF(•)(Ā,N,n))
1/2

◆

,

with J (·) defined in Theorem 1.13 and bwi =
[w•(Ā)]i�EW•(Ā)

(NVarW•(Ā))1/2
=

[w•(Ā)]i� 1
N

✓

ÂN
j=1

⇣

[w•(Ā)]j� 1
N

⌘2
◆1/2 .

Example A.10 (First Moment of Aggregate Action, Threshold Rule) Consider a sys-

tem in which agent i’s action, 8i 2 {1, . . . ,N}, takes the following form:

ai (Ā,b,N, n) =

8

>

>

<

>

>

:

bi if bfi (Ā,b,N, n) � a

0 if bfi (Ā,b,N, n) < a

.
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Random variable Ai (Ā,N, n) takes the following values:

Ai (Ā,N, n) =

8

>

>

<

>

>

:

bi with probability 1� G
bFi(Ā,N,n)(a)

0 with probability G
bFi(Ā,N,n)(a)

.

As a result,

EAagg (Ā,N, n) =
N

Â
i=1

EAi (Ā,N, n) =
N

Â
i=1

bi

⇣

1� G
bFi(Ā,N,n)(a)

⌘

.

Provided that condition (c) from Theorem 1.13 holds and each configuration of the attribute

is equally likely to occur,

G
bFi(Ā,N,n)(a) ⇡ J

0

B

@

Ā,N, n,
a � EbFi (Ā,N, n)

⇣

Var bFi (Ā,N, n)
⌘1/2

1

C

A

,

with J (·) defined in Theorem 1.13 and bwj =
[wa,i(Ā)]j�EWa,i(Ā)

(NVarWa,i(Ā))
1/2 =

[wa,i(Ā)]j� 1
N

⇣

ÂN
k=1([wa,i(Ā)]k� 1

N )
2⌘1/2

,

so

EAagg (Ā,N, n) ⇡
N

Â
i=1

bi

2

6

4

1� J

0

B

@

Ā,N, n,
a � EbFi (Ā,N, n)

⇣

Var bFi (Ā,N, n)
⌘1/2

1

C

A

3

7

5

.

We have thus solved for the first moment of the aggregate action when each agent

follows a threshold rule.

A.11 Proofs

Proof of Theorem 1.1

Since Ā is an N⇥N nonnegative primitive matrix, by the Perron-Frobenius Theorem,

there exists (1) a positive real eigenvalue l1 > |li| for all other li 6= l1, (2) an
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associated left eigenvector wT 2 R1⇥N
++ , and (3) an associated right eigenvector

v 2 RN⇥1
++ both unique up to a constant. Consider the following lemma:

Lemma A.1 (Seneta (1981), Corollary 1 to Theorem 1.1) For a primitive matrix X,

min
i2{1,...,N}

N

Â
j=1

[X]ij  l1  max
i2{1,...,N}

N

Â
j=1

[X]ij .

Since Ā is row-stochastic, l1 = 1 by Lemma A.1.

Now let the distinct eigenvalues of Ā be l1,l2, . . . ,lr, r  N, with

l1 > |l2| � |l3| � · · · � |lr| and | · | denoting the eigenvalue modulus. If two

eigenvalues share the same modulus, the one with the weakly greater algebraic

multiplicity receives the lower integer index i. The next lemma characterizes the

convergence behavior of Āq:

Lemma A.2 (Seneta (1981), Theorem 1.2) For a primitive matrix X, if l2 6= 0, then as

q ! •,

Xq = l

q
1vw

T +O
⇣

qm2�1 |l2|q
⌘

element-wise, where m2 is the algebraic multiplicity of l2; otherwise, if l2 = 0, for

q � N � 1, Xq = l

q
1vw

T.

By Lemma A.2, limq!• Āq = vwT.

From the row-stochasticity of Ā, v = a1 for some non-zero constant a, so

limq!• Āq = a1wT. Since row-stochasticity is preserved under matrix multiplica-

tion, limq!• Āq must also be row-stochastic, so

lim
q!•

Āq =

0

B

B

B

B

@

awT

...

awT

1

C

C

C

C

A
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with awT1 = 1. Set wT
• = awT. Then

lim
q!•

Āq =

0

B

B

B

B

@

wT
•
...

wT
•

1

C

C

C

C

A

.

Therefore, limq!• w(q)
ij =

⇥

wT
•
⇤

j exists, w
T
•1 = 1, and wT

•Ā = wT
•, with

�

wT
•, 1

�

the unique dominant left eigenpair given the constraint wT
•1 = 1. ⇤

Proof of Theorem 1.2

Since graph G (Ā) is undirected and all non-zero elements within every row of Ā

have the same value, either [Ā]ij =
1
di
or [Ā]ij = 0. Conjecture the solution w• = d

1Td

to wT
• = wT

•Ā, where d is the degree vector for graph G (Ā). Then,

wT
•Ā =



d
1Td

�T
Ā =

✓

ÂN
i=1

di[Ā]ij
1Td

◆

=

✓

dj
1Td

◆

=



d
1Td

�T

= wT
•.

We next demonstrate that 1Tw•:

1Tw• = 1T


d
1Td

�

= 1. ⇤

Proof of Theorem 1.3

Since graph G (A) is directed and all non-zero elements within every row of Ā have

the same value, either [Ā]ij =
1
d+i

or [Ā]ij = 0. Conjecture the solution w• = d+

1Td+
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to wT
• = wT

•Ā, where d+ is the vector of out-degrees for graph G (A). Then,

wT
•Ā =



d+

1Td+

�T
Ā =

✓

ÂN
i=1

d+i [Ā]ij
1Td+

◆

=

✓

d�j
1Td+

◆

=

✓

d+j
1Td+

◆

=



d+

1Td+

�T
= wT

•,

with d�i = d+i because graph G is Eulerian. 1Tw• = 1T
h

d+

1Td+

i

= 1, so 1Tw• = 1.

⇤

Proof of Theorem 1.4

By viewing w• as mathematically analogous to the stationary distribution of a

simple random walk on a random digraph, the statements in this Theorem follow

from Theorem 2, Lemma 14, and the Remarks of Theorem 2 from Cooper and Frieze

(2012). When c(N) = 1+ k, k > 0, or (c(N)� 1) logN = w (log logN), w.h.p.

ii = o
�

d�i
�

, so it follows that w.h.p. w• ⇠ d�
E[|E |] . Similarly, by Lemma 14 of Cooper

and Frieze (2012), w.h.p. ii = o
�

d�i
�

for N � o
�

N1/4� nodes, so w.h.p. w• ⇠ d�
E[|E |]

for N � o
�

N1/4� nodes. ⇤

Proof of Theorem 1.5

The scalar x = wTb is invariant to configuration if and only if wTb (N, n) =

wTb0 (N, n) for all b (N, n) ,b0 (N, n) 2 B (N, n), with this relation holding for each

integer n 2 [0,N]. Let n = 1, and define ei to be the ith unit vector whose ith element

equals 1 and all other elements equal zero. Then wTb (N, 1) = wTb0 (N, 1) if and

only if wTei = wTej, that is, if and only if wi = wj for all i, j 2 {1, . . . ,N}. Since
1Tw = 1, wi =

1
N for all i 2 {1, . . . ,N}. Given that w = 1

N1 when x is invariant to
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configuration, x = wTb = 1
N1Tb = n

N . ⇤

Proof of Corollary 1.1

This corollary follows immediately from Theorem 1.5. For part (1), using the

objects defined in Theorem 1.5, first replace x with bfi (Ā,b,N, n) (respectively

bf (q)i (Ā,b,N, n)) and next replace w with wa,i (resp. w
(q)
a,i ). For part (2), bf (Ā,b,N, n)

(resp. bf(q) (Ā,b,N, n)) is invariant to configuration if and only if bfi (Ā,b,N, n) (resp.

bf (q)i (Ā,b,N, n)) is invariant to configuration for all i 2 {1, . . . ,N}, that is, if and
only if [wa,i]j =

1
N (resp.

h

w(q)
a,i

i

j
= 1

N ) for all i, j 2 {1, . . . ,N}. For part (3), first
replace x with bfavg (Ā,b,N, n) (resp. bf (q)avg (Ā,b,N, n)) and next replace w with d�

w

(resp. d� (q)
w ). For part (4), first replace x with bf (•) (Ā,b,N, n) and next replace w

with w•. ⇤

Proof of Theorem 1.6

This proof employs the statements of Corollary 1.1. For part (1), bfi (Ā,b,N, n) is

invariant to configuration if and only if wa,i =
1
N1. Since wT

a,i ⌘ [Ā]i⇤, bfi (Ā,b,N, n)

is invariant to configuration if and only if [Ā]i⇤ =
1
N1T. Meanwhile, bf (q)i (Ā,b,N, n)

is invariant to configuration if and only if w(q)
a,i = 1

N1. Since
h

w(q)
a,i

iT ⌘ [Āq]i⇤,

bf (q)i (Ā,b,N, n) is invariant to configuration if and only if [Āq]i⇤ = 1
N1T. For

part (2), bf (Ā,b,N, n) is invariant to configuration if and only if [Ā]i⇤ = 1
N1T for

all i 2 {1, . . . ,N}, that is, if and only if Ā = 1
N11T. Meanwhile, bf(q) (Ā,b,N, n)

is invariant to configuration if and only if [Āq]i⇤ = 1
N1T for all i 2 {1, . . . ,N},

that is, if and only if Āq = 1
N11T. For part (3), bfavg (Ā,b,N, n) is invariant to

configuration if and only if d�
w = 1

N1. Since d�
w ⌘ 1

N ĀT1, bfavg (Ā,b,N, n) is

invariant to configuration if and only if 1
N ĀT1 = 1

N1, that is, if and only if Ā
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is doubly stochastic. Meanwhile, bf (q)avg (Ā,b,N, n) is invariant to configuration if

and only if d� (q)
w = 1

N1. Since d� (q)
w ⌘ 1

N [Āq]T 1, bf (q)avg (Ā,b,N, n) is invariant to

configuration if and only if 1
N [Āq]T 1 = 1

N1, that is, if and only if Āq is doubly

stochastic. For part (4), bf (•) (Ā,b,N, n) is invariant to configuration if and only if

w• = 1
N1. Since wT

• is the left eigenvector associated with the unique dominant unit

eigenvalue of Ā, so that wT
• = wT

•Ā, the vector w• = 1
N1 if and only if 1T = 1TĀ,

that is, if and only if Ā is doubly stochastic. ⇤

Proof of Theorem 1.7

Construct the set of N + 1 vectors {b0,b1, . . . ,bn, . . . ,bN}, for which [bn]i = 1 for

i  n and [bn]i = 0 for n+ 1  i  N. For each integer n 2 [0,N], also define the

set Sn of all N ⇥ N permutation matrices Snx,Sny 2 Sn for which Snxbn 6= bn and

Snxbn 6= Snybn.

Lemma A.3 Unordered multiset
n

bfi (Ā,b,N, n)
oN

i=1
(respectively

n

bf (q)i (Ā,b,N, n)
oN

i=1
) is invariant to configuration if and only if, for each Snx 2 Sn

and for every n 2 [0,N], there corresponds some permutation matrix R such that Ābn =

RĀSnx bn (respectively such that Āqbn = RĀqSnx bn).

Proof. Unordered multiset
n

bfi (Ā,b,N, n)
oN

i=1
is invariant to configuration if and

only if, for every configuration b0 2 B (N, n), there exists an N ⇥ N permutation

matrix R such that bf (Ā,b,N, n) = Rbf (Ā,b0,N, n), or equivalently, Āb = RĀb0.

Now, generate each configuration in the set B (N, n) by introducing the vector

bn 2 {b1, . . . ,bN} and defining the set Sn of all N ⇥ N permutation matrices

Snx,Sny 2 Sn, for which Snxbn 6= bn and Snxbn 6= Snybn. Then, for every

b0 2 B (N, n), there exists some Snx 2 Sn for which b0 = Snxbn. Multiset
n

bfi (Ā,b,N, n)
oN

i=1
is thus invariant to configuration if and only if, for each Snx 2 Sn
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and for every n 2 [0,N], there corresponds some permutation matrix R such that

Ābn = RĀSnx bn. Replace matrix Ā with Āq to obtain the result that multiset
n

bf (q)i (Ā,b,N, n)
oN

i=1
is invariant to configuration if and only if, for each Snx 2 Sn

and every n 2 [0,N], there corresponds some permutation matrix R such that

Āqbn = RĀqSnx bn.

From Lemma A.3, multiset
n

bfi (Ā,b,N, n)
oN

i=1
is invariant to configuration

if and only if there exists a permutation matrix R such that

Ābn = RĀSnxbn (A.1)

for each Snx 2 Sn and for every n 2 [0,N]. On the left-hand side of Equation A.1,

Ābn is the row sum of the first n columns of Ā. On the right-hand side of Equa-

tion A.1, Snx permutes the columns of Ā, so ĀSnxbn is the row sum of a differ-

ent set of n column vectors of Ā. With matrix R permuting the rows of ĀSnx,

Ābn = RĀSnxbn when the multiset of elements formed from the row sum of the

first n columns of Ā equals the multiset of elements formed from the row sum of

a different group of n columns of Ā. Now considering all allowable permutation

matrices Snx, multiset
n

bfi (Ā,b,N, n)
oN

i=1
is invariant to configuration if and only

if the row sum of any n columns of Ā has the same multiset of elements, and this

property holds for every integer n 2 [1,N].

It turns out that it is redundant to specify that this condition must hold for

every n 2 [1,N] ✓ Z+. Since Ā is row-stochastic, the row sum of any n column

vectors of Ā, n 2 [1,N� 1], has the same multiset of elements whenever the row sum

of any N � n column vectors of Ā has the same multiset of elements. Furthermore,

the row sum of N column vectors of Ā is always equal to 1. Therefore, we eliminate

such redundancies in the required set of integers n for which this condition must

hold and state that multiset
n

bfi (Ā,b,N, n)
oN

i=1
is invariant to configuration if and
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only if the row sum of any n columns of Ā has the same multiset of elements

for every integer n 2 ⇥1, bN
2 c
⇤

. Next, since Ā is row-stochastic, if the row sum of

any n column vectors of Ā has the same multiset of elements for every integer

n 2 ⇥1, bN
2 c
⇤

, Ā must be doubly stochastic. For n = 1, every column of Ā must have

the same multiset of elements, so every column of Ā must have the same sum a.

The sum of all matrix elements in Ā is N, by the row-stochasticity of Ā, so Na = N,

that is, a = 1. ⇤

Proof of Theorem 1.8

First method of proof: EX (Ā,N, n) = E
⇥

wTB (N, n)
⇤

, where B (N, n) is a random

vector whose elements are Bi ⇠ Bern
� n
N
�

, i 2 {1, . . . ,N}. Therefore,

EX (Ā,N, n) = E (w1B1 + w2B2 + . . .+ wNBN) =
N

Â
i=1

wiEBi =
n
N
. ⇤

Second method of proof:

EX (Ā,N, n) =
1

|B (N, n)| Â
b(N,n)2B(N,n)

[w (Ā)]T b (N, n)

=
1

|B (N, n)|
N

Â
i=1

|{b 2 B (N, n) : bi = 1}|wi

=
|{b 2 B (N, n) : bi = 1}|

|B (N, n)|
N

Â
i=1

wi =
(Nn )⇥ n

N

(Nn )
=

n
N
.

By symmetry, |{b 2 B (N, n) : bi = 1}| = ���b 2 B (N, n) : bj = 1
 

�

�,

8i, j 2 {1, . . . ,N}. ⇤

Proof of Corollary 1.2

Replace the pair (X,w) in the proof of Theorem 1.8 with each random variable

specified in the statement of Corollary 1.2 and its associated vector of weights. For
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example, to demonstrate that EbFavg (Ā,N, n) = n
N , replace (X,w) in the proof of

Theorem 1.8 with
⇣

bFavg (Ā,N, n) ,d�
w (Ā)

⌘

. Corollary 1.2 then follows. ⇤

Proof of Theorem 1.9

First demonstrating that VarX (Ā,N, n) = n
N
�

1� n
N
� N

N�1 (NVarW (Ā)):

VarX (Ā,N, n) = Var
⇥

wTB (N, n)
⇤

, where B (N, n) is a random vector whose

elements are Bi ⇠ Bern
� n
N
�

, for all i 2 {1, . . . ,N}. Therefore,

VarX (Ā,N, n) = Var (w1B1 + w2B2 + · · ·+ wNBN)

=
N

Â
i=1

Var (wiBi) +
N

Â
i=1

N

Â
j=1
j 6=i

Cov
�

wiBi,wjBj
�

=
N

Â
i=1

w2
i Var Bi +

N

Â
i=1

N

Â
j=1
j 6=i

wiwj Cov
�

Bi, Bj
�

= (Var Bi)
N

Â
i=1

w2
i +

�

E
⇥

BiBj
⇤� (EBi)

�

EBj
��

N

Â
i=1

N

Â
j=1
j 6=i

wiwj

=
n
N

⇣

1� n
N

⌘ N

Â
i=1

w2
i +



⇣ n
N

⌘

✓

n� 1
N � 1

◆

�
⇣ n
N

⌘2
� N

Â
i=1

N

Â
j=1
j 6=i

wiwj

=
n
N

⇣

1� n
N

⌘ N

Â
i=1

w2
i �

n
�

1� n
N
�

N (N � 1)

N

Â
i=1

N

Â
j=1
j 6=i

wiwj

=
n
N

⇣

1� n
N

⌘

⇥

0

B

B

@

N

Â
i=1

w2
i �

1
N � 1

N

Â
i=1

N

Â
j=1
j 6=i

wiwj

1

C

C

A

.
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Now, VarW =
1
N

N

Â
i=1

 

wi �
ÂN

j=1 wj

N

!2

=
1
N

0

@

N

Â
i=1

w2
i �

1
N

 

N

Â
i=1

wi

!2
1

A

=
1
N

0

B

B

@

N

Â
i=1

w2
i �

1
N

0

B

B

@

N

Â
i=1

w2
i +

N

Â
i=1

N

Â
j=1
j 6=i

wiwj

1

C

C

A

1

C

C

A

=
1
N

N � 1
N

2

6

6

4

N

Â
i=1

w2
i �

1
N � 1

N

Â
i=1

N

Â
j=1
j 6=i

wiwj

3

7

7

5

,

so VarX (Ā,N, n) =
n
N

⇣

1� n
N

⌘ N
N � 1

(NVarW) .

Next demonstrating that VarX (Ā,N, n) ! 0 at rate N�1 as N ! • assuming

VarW < •:

Consider the graph G (Ā1) = (V (Ā1) , E (Ā1)), |V (Ā1)| = N1, correspond-

ing to the row-stochastic matrix Ā1 with vector w1. Construct replica graphs

G (Ā2) , . . . ,G (ĀK), with Ā1 = Ā2 = · · · = ĀK and w1 = w2 = · · · = wK. Next de-

fine G (Ā) = (V (Ā) , E (Ā)), |V (Ā)| = N1K ⌘ N, where Ā = diag (Ā1, Ā2, . . . , ĀK)

is an N ⇥ N = N1K⇥ N1K block diagonal matrix, and w = (w1w2 · · ·wK)
T /K is

an N ⇥ 1 = N1K ⇥ 1 vector of weights, with individual elements normalized by

K to ensure that 1Tw = 1. Then, letting Bij ⇠ Bern
⇣

n
N1

⌘

for i 2 {1, . . . ,N1} and

j 2 {1, . . . ,K}, with Bij, Bgr independent for all j 6= r,

VarX (Ā,N1K, nK) = Var
✓

1
K
�

w11B11 + · · ·+ wN11BN11 + w12B12 + · · ·+ wN12BN12

+ · · ·+ w1KB1K + · · ·+ wN1KBN1K))

=
1
K2 KVar (w11B1 + · · ·+ w1NBN) =

1
K
VarX (Ā1,N1, n) =

N1
N

VarX (Ā1,N1, n) ,

so VarX (Ā,N1K, nK) ! 0 at rate N�1 as N ! •. ⇤
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Proof of Theorem 1.10

x (Ā,b,N, n) = [w (Ā)]T b (N, n) = Âi2{1,...,N} s.t. [b]i=1 [w]i. Therefore,

min supp X (Ā,N, n) = [w (Ā)]T b⇤ (N, n) =
n

Â
i=1

ws,

where ws is the sth smallest element in w (Ā) in the ordered multiset {ws}Ns=1 and

b⇤ (N, n) is defined so that [w (Ā)]T b⇤ (N, n)  [w (Ā)]T b (N, n) for all

b (N, n) 2 B (N, n). Meanwhile,

max supp X (Ā,N, n) = [w (Ā)]T b⇤ (N, n) =
N

Â
i=N�n+1

ws,

where ws is the sth smallest element of w (Ā) listed in the ordered multiset {ws}Ns=1

and b⇤ (N, n) is defined so that [w (Ā)]T b⇤ (N, n) � [w (Ā)]T b (N, n) for all

b (N, n) 2 B (N, n). ⇤

Proof of Theorem 1.11

The proof of Theorem 1.11 makes use of the following result from Erdös and Rényi

(1959), with notation modified for the present work:

Lemma A.4 (Erdös and Rényi (1959), Theorem 1) Consider the infinite triangular ma-

trix of real elements

w0
11

w0
21 w0

22

· · ·
· · · ·
· · · · ·

w0
N1 w0

N2 · · · w0
NN

· · · · · · ·
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with w0
N denoting the Nth row of the matrix and ÂN

j=1 w
0
Nj = 0. For any real value t,

determine T
⇣

w0
N,N, n, t

⌘

, that is, the total number of sums

y
⇣

w
0
N,N, n

⌘

= w
0
Ni1 + w

0
Ni2 + · · ·+ w

0
Nin , 1  i1 < i2 < · · · < in  N,

whose value does not exceed ts
⇣

w0
N,N, n

⌘

⌘ t
q

n
N
�

1� n
N
�

ÂN
j=1 w

0 2
Nj. Let CDF

GY(w0
N ,N,n)

s(w0
N ,N,n)

(t) =
T
⇣

w0
N ,N,n,t

⌘

(Nn )
. With

k

⇣

w
0
N,N, n, e

⌘

⌘ 1
ÂN

j=1 w
0 2
Nj

Â
j2{1,...,N} s.t.

�

�

�

w0
Nj

�

�

�

>es

⇣

w0
N ,N,n

⌘

w
0 2
Nj

if limN!• k

⇣

w0
N,N, n, e

⌘

= 0 for any e > 0, then limN!• GY
s

(t) = F (t) for any real

t, where F (·) denotes the standard normal CDF.

For a given population size N, set w0
N = wN (Ā)� 1

N , where wN (Ā) is the

general vector of weights discussed in the text, and subscript N is added to make

the population size explicit. Then ÂN
j=1 w

0
Nj = ÂN

j=1

⇣

wNj � 1
N

⌘

= 0. Scalar quantity

x (Ā,b,N, n)� n
N

= [wN (Ā)]T b (N, n)� n
N

=

✓

wNi1 �
1
N

◆

+

✓

wNi2 �
1
N

◆

+ · · ·+
✓

wNin �
1
N

◆

= w
0
Ni1 + w

0
Ni2 + · · ·+ w

0
Nin ,

where 1  i1 < i2 < · · · < in  N, given a configuration b (N, n) 2 B (N, n). Thus,
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by Lemma A.4,

GY(w0
N ,N,n)

s(w0
N ,N,n)

(t) =
T
⇣

w0
N,N, n, t

⌘

(Nn )

=
1
(Nn )

Â
81i1<i2<···<inN

1w0
Ni1

+w0
Ni2

+···+w0
Nints(w0

N ,N,n)

=
1
(Nn )

Â
b(N,n)2B(N,n)

1x(Ā,b,N,n)� n
Nts(w0

N ,N,n)

= GX(Ā,N,n)� n
N

s(w0
N ,N,n)

(t),

so limN!• GX(Ā,N,n)� n
N

s(w0
N ,N,n)

(t) = F (t), where s

⇣

w0
N,N, n

⌘

=

r

n
N
�

1� n
N
�

ÂN
j=1

⇣

wNj � 1
N

⌘2
. ⇤

Proof of Theorem 1.12

The proof of Theorem 1.12 makes use of the following result from Höglund (1978),

with notation modified for the present work:

Lemma A.5 (Höglund (1978), Main Theorem) Let w1, . . . ,wN be a sequence of real

numbers. Let 0 < n < N and let GY (t) = T(w,N,n,t)
(Nn )

, where T (w,N, n, t) is the total

number of sums

y = wi1 + wi2 + · · ·+ win , 1  i1 < i2 < · · · < in  N,
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whose value does not exceed t. Then, for all real t,
�

�

�

�

�

�

�

GY (t)� F

0

B

@

t� nw̄
⇣

n
N
�

1� n
N
�

ÂN
i=1 ([w]i � w̄)2

⌘1/2

1

C

A

�

�

�

�

�

�

�

 C
q

n
N
�

1� n
N
�

ÂN
i=1 |[w]i � w̄|3

⇣

ÂN
i=1 ([w]i � w̄)2

⌘3/2 ,

where w̄ = 1
N ÂN

i=1 wi.

For the vector of weights, w (Ā), discussed in the text, w̄ = 1
N ÂN

i=1 [w (Ā)]i =

1
N , and

GY (t) =
T (w,N, n, t)

(Nn )
=

1
|B (N, n)| Â

b(N,n)2B(N,n)
1x(Ā,b,N,n)t = GX(Ā,N,n) (t) .

By Lemma A.5, Theorem 1.12 thus follows. ⇤

Proof of Theorem 1.13

The proof of Theorem 1.13 makes use of the following result from Robinson (1978),

with notation modified for the present work:

Lemma A.6 (Robinson (1978), Main Theorem) Let {aNi} be a triangular array of real

numbers for i = 1, . . . ,N, N = 2, 3, . . . and suppose ÂN
i=1 aNi = 0, ÂN

i=1 a2Ni = 1. Let

KNn = Ân
i=1 aNRNi , where (RN1, . . . ,RNN) is a uniform random permutation of (1, . . . ,N).

Let LNn = KNn
(VarKNn)

1/2 and GNn (t) = Pr (LNn < t). Set p = n
N and q = 1� n

N . If

condition (c) holds, then

|GNn (t)� JNn (t)| < C4 ⇥
N

Â
i=1

|aNi|5
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for all t, where C4 is a function of p only,

JNn(t) = F (t)� H2 (t) f (t)
q� p

6 (pq)1/2
N

Â
i=1

a3Ni

� H3 (t) f (t)

"

1� 6pq
24pq

 

N

Â
i=1

a4Ni � 3N�1

!

� 1
4
N�1

#

� H5 (t) f (t)
(q� p)2

72pq

 

N

Â
i=1

a3Ni

!2

,

f (t) = F0 (t) = (2p)�1/2 e� 1
2 t

2 , and Hi (t) f (t) = (�1)i
⇣

d i

dt i

⌘

f (t). Condition (c) is

as follows:

Condition (c) Given C0 > 0, there exist e > 0, C > 0, and d > 0 not depending on N

such that, for any fixed t, the number of indices j, for which
�

�aNj bx� t� 2rp
�

� > e, for

all bx 2
✓

C0 [maxi | aNi | ]�1 , C
h

ÂN
i=1 | aNi |5

i�1
◆

and all r = 0,±1,±2, . . . , is greater

than dN, for all N.

Fix N and substitute aNi with the standardized weight bwi =
[w]i�EWp
NVarW

, where

EW = 1
N ÂN

i=1 [w]i and VarW = 1
N ÂN

i=1 ([w]i � EW)2. Verify that

N

Â
i=1
bwi =

N

Â
i=1

wi � EWp
NVarW

= 0 and
N

Â
i=1
bw2
i =

N

Â
i=1

(wi � EW)2

NVarW
= 1.

With Bi ⇠ Bern
� n
N
�

and Var bW = 1
N ÂN

i=1

⇣

bwi � E bW
⌘2

= 1
N ÂN

i=1 bw2
i =

1
N ,

Ln ⌘ Kn

(VarKn)
1/2 =

Ân
i=1 bwRi

�

VarÂn
i=1 bwRi

�1/2 =
Ân

i=1
(wRi�EW)
(NVarW)1/2

(Var ( bw1B1 + bw2B2 + · · ·+ bwNBN))
1/2

=
Ân

i=1 wRi � nEW

(NVarW)1/2
⇣

n
N
�

1� n
N
� N

N�1NVar bW
⌘1/2

=
X (Ā,N, n)� EX (Ā,N, n)

(VarX (Ā,N, n))1/2
,

and Theorem 1.13 follows. ⇤
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Proof of Theorem 1.14

When k
w

agents have the same non-zero weight w, and all other N � k
w

agents

have zero weight, gX(Ā,N,n) (t) is non-zero only for integer multiples of w : iw.

We now determine the allowable values of i. Given N, n, k
w

, the smallest possi-

ble value of i is max {0, n� (N � k
w

)}. If N � k
w

� n, that is, if the number of

agents with zero weight is greater than or equal to n, then there exists at least

one configuration b (N, n) for which x (Ā,b,N, n) = 0 and gX(Ā,N,n) (0) > 0. If

N � k
w

< n, so that the number of agents with zero weight is less than n, then

min suppX (Ā,N, n) = [n� (N � k
w

)] ⇥ w. Given N, n, k
w

, the largest possible

value of i is min {n, k
w

}. If n  k
w

, then there exists at least one configuration

b (N, n) for which x (Ā,b,N, n) = nw and gX(Ā,N,n) (nw) > 0. If n > k
w

, then

max suppX (Ā,N, n) = k
w

w. Therefore, we define the set

I = {max {0, n� (N � k
w

)} ,max {0, n� (N � k
w

)}+ 1, . . . ,min {n, k
w

}} .

For all values i 2 I ,
gX(Ā,N,n) (iw) =

(kw

i )(
N�k

w

n�i )

(Nn )
,

which is hypergeometric. For all values i /2 I , gX(Ā,N,n) (iw) = 0. ⇤

Proof of Theorem 1.15

For all i, ` 2 {1, . . . ,N}, [Ā]i` 2
n

0, 1k
o

. Then d�
w (Ā) = 1

N ĀT1 = 1
N

1
k d

� (A) and

D�
w (Ā) = 1

Nk D
� (A). With

VarD�
w (Ā) =

1
N

N

Â
i=1

✓

⇥

d�
w (Ā)

⇤

i �
1
N

◆2
=

1
N

N

Â
i=1

✓

1
Nk
⇥

d� (A)
⇤

i �
k
Nk

◆2

=

✓

1
Nk

◆2
VarD� (A) ,
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it follows from Theorem 1.9 that

Var bFavg (Ā,N, n) =
n
N

⇣

1� n
N

⌘ N
N � 1

N
✓

1
Nk

◆2
VarD� (A) .

Construct the ordered multiset {ws}Ns=1 from the elements of d�
w (Ā) so that

ws  ws0 whenever s  s0. From Theorem 1.10, min supp bFavg (Ā,N, n) = Ân
s=1 ws =

1
Nk Ân

s=1 vs and max supp bFavg (Ā,N, n) = ÂN
s=N�n+1 ws = 1

Nk Ân
s=N�n+1 vs. ⇤

Proof of Theorem 1.16

X (Ā,N, n) =
eW1(Ā)+···+ eWn(Ā)

n ⇥ f , with f = n
N fixed as N ! •, so

eW1(Ā)+···+ eWn(Ā)
n =

1
f X (Ā,N, n) . Suppose that Var eWi (Ā) = N2 VarW (Ā) is finite. Then by the Classi-

cal Central Limit Theorem,

n1/2
✓

1
f
X (Ā,N, n)� E eWi (Ā)

◆

��!
d

N
⇣

0, Var eWi (Ā)
⌘

,

where E eWi (Ā) = 1. Now suppose that Var eWi (Ā) is infinite and E eWi (Ā) = 1.

Specifically, Pr
h

eWi (Ā) > t
i

⇠ L (t) t�x , where L (t) is a slowly varying function

and x 2 (1, 2) since Var eWi (Ā) is infinite and E eWi (Ā) is finite. As discussed in

Nolan (2014), a specific case of the Generalized Central Limit Theorem is as follows,

with notation adapted for the present setting:

Lemma A.7 Let eW1 (Ā) , eW2 (Ā) , . . . be independent, identically distributed random vari-

ables. Suppose that Pr
h

eWi (Ā) > t
i

⇠ C+t�x and Pr
h

eWi (Ā) < �t
i

⇠ C� |t|�x as

t ! • with 1 < x < 2 and C+ + C� > 0. Set b = C+�C�
C++C� . Then

eW1 (Ā) + · · ·+ eWn (Ā)� nE eWi (Ā)

n1/x

��!
d

eS (x, b, eg, 0; 1) ,

where eS (x, b, eg, 0; 1) is a stable distribution with characteristic function

E exp
⇣

iu eWi (Ā)
⌘

= exp
✓

�egx |u|x


1� ib
✓

tan
px

2

◆

⇥ sign u
�◆
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when x 6= 1.

With
eW1(Ā)+···+ eWn(Ā)�nE eWi(Ā)

n1/x

= n1�1/x

⇣

eW1(Ā)+···+ eWn(Ā)
n � E eWi (Ā)

⌘

, we obtain the

result

n1�1/x

✓

1
f
X (Ā,N, n)� E eWi (Ā)

◆

��!
d

eS (x, b, eg, 0; 1) . ⇤

Proof of Theorem 1.17

EX
⇣

Ā,N, n, (gi)
N
i=1

⌘

= E [w1 (Ā) B1 + w2 (Ā) B2 + · · ·+ wN (Ā) BN ] = [w (Ā)]T µ,

and

VarX
⇣

Ā,N, n, (gi)
N
i=1

⌘

= Var [w1 (Ā) B1 + w2 (Ā) B2 + · · ·+ wN (Ā) BN ]

= [w (Ā)]T S [w (Ā)] ,

with µ = EB as the conditional mean vector for B and S as the N ⇥ N conditional

covariance matrix for B. The N ⇥ 1 random vector B ⌘ B (N, n, s,y) is distributed

according to Fisher’s multivariate non-central hypergeometric distribution (see

McCullagh and Nelder (1989)). Each agent exists in the population with frequency

1, so define the N ⇥ 1 frequency vector s = 1. Next, let f be an N ⇥ 1 vector of

probabilities whose elements are defined as fi = Pr [Bi = 1| gi]; construct the N ⇥ 1

vector y with element yi =
fi

1�fi
/ fk
1�fk

relative to some agent k and yk ⌘ 1. µ and S

can be approximated by solving the following system of equations:

N

Â
i=1

µi = n,

yj =
µj (sk � µk)� Sjk
�

sj � µj
�

µk � Sjk
, 8j 2 {1, . . . ,N} \ {k} , and

S =
N

N � 1

 

diag z � zzT

1Tz

!

, with
1
z j

=
1
µj

+
1

sj � µj
.
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Now, the number of equations in the system can be reduced by noting that

µi = µj when fi = fj, so zi = z j, yi = yj, and Sik = Sjk. Therefore, partition agent

indices into Q categories according to their conditional probabilities, that is, agents

i, j are in category q if fi = fj = r

q

. Define the odds ratio for agents in category

q relative to category k as: by
q

= r

q

1�r

q

/ rk
1�rk

, with byk ⌘ 1. Define the Q ⇥ 1 vector

bµ across the Q categories, setting µi = b

µ

q

for each agent i from category q, and

setting zi = b

µ

q

(1� bµ
q

) for each agent i from category q. Define the Q ⇥ Q matrix bS

with element bS
qk equal to the conditional covariance Cov

�

Bi, Bj
�

between agent i in

category q and agent j in category k. The system of equations then collapses to the

following:

Q

Â
q=1

Â
i2{1,...,N}
s.t. fi=r

q

b

µ

q

= n,

b

y

q

=
b

µ

q

(1� bµk)� bSqk

(1� bµ
q

) bµk � bSqk
, 8q 2 {1, . . . ,Q} \ {k}, and

S =
N

N � 1

 

diag z � zzT

1Tz

!

. ⇤

Proof of Theorem A.1

The first three lines of this proof have a similar (but not equal) construction to

those in the proof for Theorem 1.2 in Seneta (1981), so they are accordingly marked.

Define the resolvent R (z) = (I� zĀ)�1 with matrix element [R (z)]ij and z 6= l

�1
i

for every eigenvalue li of Ā, i 2 {1, . . . , t}. Eigenvalues li are ordered by weakly

descending modulus with mi, the algebraic multiplicity of li, greater than mi+1

whenever |li| = |li+1|.
R (z) =

Adj (I� zĀ)
det (I� zĀ)

,
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where Adj (X) is the adjugate matrix of X, or the transpose of the cofactor matrix of

X.

[R (z)]ij =
cij (z)

(1� z) (1� zl2)
m2 · · · (1� zlt)

mt , (A.2)

where cij (z) is a polynomial in z of degree at most N � 1. By partial fraction

decomposition,

[R(z)]ij = hij (z) +
gij

1� z
+

m2�1

Â
s=0

bij,m2�s

(1� zl2)
m2�s +

m3�1

Â
s=0

bij,m3�s

(1� zl3)
m3�s + · · · , (A.3)

where gij,
�

bij,m2�s
 m2�1
s=0 ,

�

bij,m3�s
 m3�1
s=0 , . . . are constants, and hij (z) = hij,0 +

hij,1 z+ · · ·+ hij,N�2 zN�2 is a polynomial of degree at most N� 2. For |z| < 1
l1

= 1,

[R (z)]ij = hij (z)+gij

•

Â
q=0

zq+
m2�1

Â
s=0

bij,m2�s

"

•

Â
q=0

✓�m2 + s
q

◆

(�zl2)
q

#

+ · · · . (A.4)

Now, since s 2 {0, 1, . . . ,m2 � 1}, �m2 + s < 0 so (�m2+s
q ) = (�1)q(m2�s+q�1

q )

and

[R (z)]ij =
•

Â
q=0

zq [Āq]ij

= hij (z) + gij

•

Â
q=0

zq +
m2�1

Â
s=0

bij,m2�s

"

•

Â
q=0

✓

m2 � s+ q� 1
q

◆

(zl2)
q

#

+ · · · .

Matching coefficients of zq,

[Āq]ij =

8

>

>

<

>

>

:

hij,q +
⇥

wT
•
⇤

j + Âm2�1
s=0 bij,m2�s (

m2�s+q�1
q ) l

q
2 + · · · for 1  q  N � 2

⇥

wT
•
⇤

j + Âm2�1
s=0 bij,m2�s (

m2�s+q�1
q ) l

q
2 + · · · for q > N � 2

,
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with hij,q = 0 for q > N � 2 and gij =
⇥

wT
•
⇤

j by Lemma A.2. It follows that

bf (q)i (Ā,b,N, n) =
N

Â
j=1

[Āq]ij [b]j

= bf (•) (Ā,b,N, n) +
N

Â
j=1

"

hij,q +
m2�1

Â
s=0

bij,m2�s

✓

m2 � s+ q� 1
q

◆

l

q
2

#

[b]j

+
N

Â
j=1

"

m3�1

Â
s=0

bij,m3�s

✓

m3 � s+ q� 1
q

◆

l

q
3

#

[b]j

= bf (•) (Ā,b,N, n) +
N

Â
j=1

"

hij,q +
m2�1

Â
s=0

bij,m2�s

✓

m2 � s+ q� 1
q

◆

l

q
2

#

[b]j

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘

since
✓

m3 � s+ q� 1
q

◆

=
(q+ 1)(q+ 2) · · · (q+ (m3 � s� 1))

(m3 � s� 1)!

<
(q+ (m3 � s� 1))m3�s�1

(m3 � s� 1)!

 (q+m3 � 1)m3�1

(m3 � s� 1)!
.

When m2 = 1,

bf (q)i (Ā,b,N, n) = bf (•) (Ā,b,N, n) +
N

Â
j=1

⇥

hij,q + l

q
2 bij,m2�0

⇤

[b]j

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘

.

To determine the rate of convergence, note that

✓

m2 � s+ q� 1
q

◆

2
 

qm2�s�1

(m2 � s� 1)!
,
(q+ (m2 � s� 1))m2�s�1

(m2 � s� 1)!

!

,

qm2�s�1 = qm2�1q�s,
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and

((q+ 1) + (m2 � s� 1))m2�s�1

= ((q+ 1) + (m2 � s� 1))m2�1 ((q+ 1) + (m2 � s� 1))�s

 ((q+ 1) + (m2 � 1))m2�1 ((q+ 1) + (m2 � s� 1))�s .

Then,
�

�

�

�

�

bf (q+1)
i (Ā,b,N, n)� bf (•) (Ā,b,N, n)
bf (q)i (Ā,b,N, n)� bf (•) (Ā,b,N, n)

�

�

�

�

�

=

�

�

�

�

�

�

ÂN
j=1

h

hij,q+1 + Âm2�1
s=0 bij,m2�s(

m2�s+q
q+1 )l

q+1
2 + · · ·

i

[b]j

ÂN
j=1

h

hij,q + Âm2�1
s=0 bij,m2�s(

m2�s+q�1
q )l

q
2 + · · ·

i

[b]j

�

�

�

�

�

�



�

�

�

�

�

�

�

�

ÂN
j=1



hij,q+1 + Âm2�1
s=0 bij,m2�s

((q+1)+(m2�s�1))m2�s�1

(m2�s�1)! l

q+1
2 + · · ·

�

[b]j

ÂN
j=1

h

hij,q + Âm2�1
s=0 bij,m2�s

qm2�s�1

(m2�s�1)! l

q
2 + · · ·

i

[b]j

�

�

�

�

�

�

�

�

= O
 

✓

1+
m2
q

◆m2�1
|l2|

!

.

As q ! •, by Lemma A.2,

bf (q)i (Ā,b,N, n) = bf (•) (Ā,b,N, n) +O
⇣

qm2�1 |l2|q
⌘

. ⇤

Proof of Theorem A.2

Demonstrating that gX(Ā,N,n)(t) is always symmetric if gW(Ā)(t) is symmetric:

Start with the set B (N, n) of configurations. Remove all configurations

b (N, n) for which [w (Ā)]T b (N, n) = n
N . Partition the set

B (N, n) \
n

b (N, n) 2 B (N, n) : [w (Ā)]T b (N, n) =
n
N

o

into pairs (b (N, n) ,b0 (N, n)). Choose b0 (N, n) to pair with b (N, n) according to
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the following procedure:

For each index i for which [b]i = 1, select a unique index j for which

wi � 1
N = 1

N � wj. Accordingly, set [b0]j = 1. Then go to the next index i for which

[b]i = 1, choose a different index j for which wi � 1
N = 1

N � wj, and set [b0]j = 1.

Continue until b0 (N, n) has been constructed. The construction of b0 (N, n) for every

pair (b (N, n) ,b0 (N, n)) is guaranteed because gW(Ā)(t) is symmetric, so multiset

{wi}Ni=1 \
n

wi : wi =
1
N

o

can be partitioned into pairs such that wi � 1
N = 1

N � wj

for each pair
�

wi,wj
�

. It then follows that, for every pair (b (N, n) ,b0 (N, n)),

⇣

x (Ā,b,N, n)� n
N

⌘

+
⇣

x (Ā,b,N, n)� n
N

⌘

=
⇣

[w (Ā)]T b (N, n)� n
N

⌘

+
⇣

[w (Ā)]T b0 (N, n)� n
N

⌘

=

0

B

B

@

Â
i2{1,...,N}
s.t. bi=1

wi � n
N

1

C

C

A

+

0

B

B

B

@

Â
j2{1,...,N}
s.t. bj=1

wj � n
N

1

C

C

C

A

=

0

B

B

B

@

Â
j2{1,...,N}
s.t. bj=1

✓

2
N

� wj

◆

� n
N

1

C

C

C

A

+

0

B

B

B

@

Â
j2{1,...,N}
s.t. bj=1

wj � n
N

1

C

C

C

A

=
2n
N

� 2n
N

+ Â
j2{1,...,N}
s.t. bj=1

wj � Â
j2{1,...,N}
s.t. bj=1

wj

= 0,

so gX(Ā,N,n)(t) must be symmetric.

Demonstrating that gX(Ā,N,n)(t) is always symmetric when f = 0.5:

Let f = n
N = 0.5 (0.5N 2 Z+). Consider all configurations b (N, 0.5N) 2

B (N, 0.5N) for which [w (Ā)]T b (N, 0.5N) 6= n
N . gX(Ā,N,0.5N)(t) is symmetric if and

only if

[w (Ā)]T b (N, 0.5N)� n
N

=
n
N

� [w (Ā)]T b0 (N, 0.5N)
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for every pair (b (N, 0.5N) ,b0 (N, 0.5N)), that is, if and only if,

[w (Ā)]T
�

b (N, 0.5N) + b0 (N, 0.5N)
�

= 0.5+ 0.5 = 1

for every pair (b (N, 0.5N) ,b0 (N, 0.5N)). Set b0 (N, 0.5N) =

1� b (N, 0.5N) 2 B (N, 0.5N), and it follows that gX(Ā,N,0.5N)(t) is symmetric.

Demonstrating that gX(Ā,N,n)(t) = gX(Ā,N,N�n)(1� t), so that

VarX (Ā,N, n) = VarX (Ā,N,N � n), SkewX (Ā,N, n) =

� SkewX (Ā,N,N � n), and KurtX (Ā,N, n) = KurtX (Ā,N,N � n):

gX(Ā,N,n)(t) = gX(Ā,N,N�n)(1� t) if and only if there exist pairs

(b (N, n) ,b (N,N � n)) of configurations such that

[w (Ā)]T b (N, n) = 1� [w (Ā)]T b (N,N � n)

for every pair, that is, if and only if

[w (Ā)]T (b (N, n) + b (N,N � n)) = 1

for every pair. Set b (N, n) = 1� b (N,N � n), with b 2 B (N, n) and

b (N,N � n) 2 B (N,N � n), so gX(Ā,N,n)(t) = gX(Ā,N,N�n)(1� t). It then follows

that VarX (Ā,N, n) = VarX (Ā,N,N � n), SkewX (Ā,N, n) =

� SkewX (Ā,N,N � n), and KurtX (Ā,N, n) = KurtX (Ā,N,N � n). ⇤
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Proof of Theorem A.3

Construct the ordered multiset {ws}Ns=1 from the elements of w (Ā) so that ws  ws0

whenever s  s0. For j 2 {�2,�1, 0, 1, 2, }, define

`n+j = max suppX (Ā,N, n+ j)�min suppX (Ā,N, n+ j)

=
N

Â
s=N�n+1�j

ws �
n+j

Â
s=1

ws.

First, `n � `n�1 = wN�n+1 � wn � 0 if and only if wN�n+1 � wn, that is, if and only

if

n  N � n+ 1 , 2n  N + 1 , 0  f  1
2

✓

N + 1
N

◆

, 0  f  1
2
,

so the width of suppX (Ā,N, n) weakly increases for f 2
h

0, 12
i

.

Next, `n+1 � `n = wN�n � wn+1  0 if and only if wN�n  wn+1, that is, if

and only if

n+ 1 � N � n , 2n � N � 1 , 1 � f � 1
2

✓

N � 1
N

◆

, 1  f  1
2
,

so the width of suppX (Ā,N, n) weakly decreases for f 2
h

1
2 , 1
i

.

Last,

(`n � `n�1)� (`n�1 � `n�2) = (wN�n+1 � wn)� (wN�n+2 � wn�1)

= (wN�n+1 � wN�n+2) + (wn�1 � wn)  0,

so the width of suppX (Ā,N, n) weakly increases at a weakly decreasing rate for

f 2
h

0, 12
i

, and

(`n+2 � `n+1)� (`n+1 � `n) = (wN�n�1 � wn+2)� (wN�n � wn+1)

= (wN�n�1 � wN�n) + (wn+1 � wn+2)  0,
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so the width of suppX (Ā,N, n) weakly decreases at a weakly increasing rate for

f 2
h

1
2 , 1
i

. ⇤

Proof of Theorem A.4

Cov (X1 (Ā,N, n) ,X2 (Ā,N, n)) = Cov
⇥

wT
1B (N, n) ,wT

2B (N, n)
⇤

, where B (N, n) is

a random vector whose elements are Bi ⇠ Bern n
N , for all i 2 {1, . . . ,N}. Therefore,

Cov (X1 (Ā,N, n) ,X2 (Ā,N, n))

= Cov (w11B1 + w12B2 + · · ·+ w1NBN, w21B1 + w22B2 + · · ·+ w2NBN)

=
N

Â
i=1

Cov (w1iBi, w2iBi) +
N

Â
i=1

N

Â
j=1
j 6=i

Cov
�

w1iBi, w2jBj
�

= (Var Bi)
N

Â
i=1

w1iw2i +
�

E
⇥

BiBj
⇤� (EBi)

�

EBj
��

N

Â
i=1

N

Â
j=1
j 6=i

w1iw2j

=
n
N

⇣

1� n
N

⌘ N

Â
i=1

w1iw2i �
n
�

1� n
N
�

N (N � 1)

N

Â
i=1

N

Â
j=1
j 6=i

w1iw2j

=
n
N

⇣

1� n
N

⌘

⇥

0

B

B

@

N

Â
i=1

w1iw2i � 1
N � 1 Â

k=1
N

N

Â
j=1
j 6=i

w1iw2j

1

C

C

A

.
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Now,

Cov (w1,w2) =
1
N

N

Â
i=1

 

w1i �
ÂN

j=1 w1j

N

! 

w2i �
ÂN

j=1 w2j

N

!

=
1
N

 

N

Â
i=1

w1iw2i � 1
N

N

Â
i=1

w1i

N

Â
i=1

w2i

!

=
1
N

0

B

B

@

N

Â
i=1

w1iw2i � 1
N

N

Â
i=1

w1iw2i � 1
N

N

Â
i=1

N

Â
j=1
j 6=i

w1iw2j

1

C

C

A

=
1
N

N � 1
N

0

B

B

@

N

Â
i=1

w1iw2i � 1
N � 1

N

Â
i=1

N

Â
j=1
j 6=i

w1iw2j

1

C

C

A

,

so Cov (X1 (Ā,N, n) ,X2 (Ā,N, n)) = n
N
�

1� n
N
� N

N�1 (NCov (W1,W2)). ⇤

Proof of Theorem A.5

By Corollary 1.2, E bF(q) (Ā,N, n) = n
N1. Next,

h

S(q) (Ā,N, n)
i

ik
=

n
N

⇣

1� n
N

⌘ N
N � 1

⇣

NCov
⇣

W(q)
i,a (Ā) ,W(q)

k,a (Ā)
⌘⌘

=
n
N

⇣

1� n
N

⌘ N
N � 1

N

 

1
N

N

Â
j=1

✓

h

w(q)
i,a

i

j
� 1

N

◆✓

h

w(q)
k,a

i

j
� 1

N

◆

!
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by Theorem A.4, with
h

w(q)
i,a (Ā)

iT
= [Āq]i⇤ and

h

w(q)
k,a (Ā)

iT
= [Āq]k⇤. From

Theorem A.1,

Cov
⇣

W(q)
i,a (Ā) ,W(q)

k,a (Ā)
⌘

=
1
N

N

Â
j=1

 

hij,q +
m2�1

Â
s=0

bij,m2�s

✓

m2 � s+ q� 1
q

◆

l

q
2

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘

+
h

wT
•

i

j
� 1

N

◆

⇥
 

hkj,q +
m2�1

Â
s=0

bkj,m2�s

✓

m2 � s+ q� 1
q

◆

l

q
2

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘

+
h

wT
•

i

j
� 1

N

◆

.

As q ! •, hij,q = hkj,q = 0 and (m2�s+q�1
q ) ⇠ qm2�s�1

(m2�s�1)! <
qm2�1

(m2�s�1)! , so

Cov
⇣

W(q)
i,a (Ā) ,W(q)

k,a (Ā)
⌘

=
1
N

N

Â
j=1

 

m2�1

Â
s=0

bij,m2�s

✓

m2 � s+ q� 1
q

◆

l

q
2

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘⌘

⇥
 

m2�1

Â
r=0

bkj,m2�r

✓

m2 � r+ q� 1
q

◆

l

q
2 +O

⇣

(q+m3 � 1)m3�1 |l3|q
⌘

!

+
1
N

N

Â
j=1

 

m2�1

Â
s=0

bij,m2�s

✓

m2 � s+ q� 1
q

◆

l

q
2

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘⌘

✓

h

wT
•

i

j
� 1

N

◆

+
1
N

N

Â
j=1

 

m2�1

Â
s=0

bkj,m2�s

✓

m2 � s+ q� 1
q

◆

l

q
2

+O
⇣

(q+m3 � 1)m3�1 |l3|q
⌘⌘

✓

h

wT
•

i

j
� 1

N

◆

+
1
N

N

Â
j=1

✓

h

wT
•

i

j
� 1

N

◆2

= O
⇣

q2m2�2 |l2|2q
⌘

+Var (W• (Ā))

and

S(q) =



n
N

⇣

1� n
N

⌘ N
N � 1

N
�

⇥
h

O
⇣

q2m2�2 |l2|2q
⌘

+Var (W• (Ā))
i

11T.
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Since limq!•

h

w(q)
i,a (Ā)

iT
= [w• (Ā)]T for all i 2 {1, . . . ,N}, by Theorem A.4,

lim
q!•

S(q) (Ā,N, n) =


n
N

⇣

1� n
N

⌘ N
N � 1

NVarW• (Ā)

�

11T. ⇤

Proof of Theorem A.6

VarX (Ā,N, n) = n
N
�

1� n
N
� N

N�1 NVarW (Ā), so VarX (Ā,N, n) is maximal when

VarW (Ā) is maximal. Now,

VarW (Ā) =
1
N

N

Â
j=1

✓

[w (Ā)]j �
1
N

◆2

=
1
N

"

N

Â
j=1

⇣

[w (Ā)]j

⌘2 � 2
N

N

Â
j=1

[w (Ā)]j +
N

Â
j=1

1
N2

#

=
1
N

"

N

Â
j=1

⇣

[w (Ā)]j

⌘2 � 1
N

#

,

so VarW (Ā) is maximal when ÂN
j=1

⇣

[w (Ā)]j

⌘2
is maximal. Choose elements for

the multiset
n

[w (Ā)]j

oN

j=1
, whose values are constrained so that ÂN

j=1 [w (Ā)]j = 1

and [w (Ā)]j 2 [0, 1) 8j 2 {1, . . . ,N}. Now, for [w (Ā)]k  [w (Ā)]i, transfer e

mass from [w (Ā)]k to [w (Ā)]i so that [w (Ā)]k �! [w (Ā)]k � e and [w (Ā)]i �!
[w (Ā)]i + e. The constraints continue to be satisfied and ÂN

j=1

⇣

[w (Ā)]j

⌘2
increases.

VarW (Ā) is thus maximal when [w (Ā)]i = 1 and [w (Ā)]j = 0, 8j 6= i. ⇤

Proof of Corollary A.1

Corollary A.1 follows immediately from Theorem A.6 by replacing w (Ā) with

wa,i (Ā) and replacing X (Ā,N, n) with bFa,i (Ā,N, n). ⇤
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Proof of Corollary A.2

(1) Start with [d�
w ]j = 1 and [d�

w ]k = 0, 8k 6= j. Since G (A) is undirected, for graph

G (Ā), assign the weight 1
N�1 to each directed edge from node j to node k, 8k 6= j.

Then [d�
w ]k =

1
N

⇣

1
N�1

⌘

8k 6= j and [d�
w ]j =

1
N (N � 1) = 1� 1

N .

(2) Start with [d�
w ]j = 1 and [d�

w ]k = 0, 8k 6= j. Assign an e weight to every

self-loop for nodes k 6= j for e > 0 small. Since G (A) is undirected, introduce the

weight e

N�1 for each directed edge in graph G (Ā) from node j to node k, 8k 6= j.

Then [d�
w ]k =

1
N
�

e + e

N�1
�

= e

N�1 and [d�
w ]j = 1� (N � 1) e

N�1 = 1� e.

(3) Part (3) of Corollary A.2 follows immediately from Theorem A.6. Replace

the pair (X (Ā,N, n) ,w (Ā)) with
⇣

bFavg (Ā,N, n) ,d�
w (Ā)

⌘

. Node j has a self-loop

to preserve the row-stochasticity of Ā.

(4) Start with [d�
w ]j = 1 and [d�

w ]k = 0, 8k 6= j. Assign an e weight to

every self-loop for nodes k 6= j, for e > 0 small, so that [d�
w ]k =

e

N , 8k 6= j. Then

[d�
w ]j = 1� (N � 1)

�

e

N
�

= 1� N�1
N e. ⇤

Proof of Corollary A.3

[w• (Ā)]j =
dj

ÂN
k=1 dk

. Assuming that every node has a self-loop, [w• (Ā)]j is maximal

when dj = (N� 1) + 1 and dk = 1+ 1 = 2 8k 6= j, so [w• (Ā)]j =
N

N+2(N�1) =
N

3N�2

and [w• (Ā)]k =
2

3N�2 8k 6= j. ⇤

Proof of Corollary A.4

[w• (Ā)]j =
d+j

ÂN
k=1 d

+
k
. Assuming that every node has a self-loop, since Ā is strongly

connected, [w• (Ā)]j is maximal when d+j = N and d+k = 2 8k 6= j, so [w• (Ā)]j =

N
N+(N�1)2 = N

3N�2 and [w• (Ā)]k =
2

3N�2 8k 6= j. ⇤
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Proof of Theorem A.7

Consider a set of N nodes connected with M undirected edges. If every node

has a self-loop, [w•]i =
di+1

ÂN
j=1 dj+1

, where di is the degree of node i arising from

non-self-loop edges. If every node lacks a self-loop, [w•]i = di
ÂN

j=1 dj
. Given N,

n, Var bF(•) (Ā,N, n) is maximal when VarW• (Ā) = 1
N ÂN

i=1

⇣

[w• (Ā)]i � 1
N

⌘2
is

maximal, so we seek a network topology that maximizes this latter quantity. Now,

if every node has a self-loop,

1
N

N

Â
i=1

✓

[w• (Ā)]i �
1
N

◆2
=

1
N

N

Â
i=1

 

di + 1
ÂN

j=1 dj + 1
� 1

N

!2

=
1
N

2

4

⇣

ÂN
i=1 d2i

⌘

+ 4M+ N

(2M+ N)2
� 1

N

3

5 ,

and if every node lacks a self-loop,

1
N

N

Â
i=1

✓

[w• (Ā)]i �
1
N

◆2
=

1
N

N

Â
i=1

 

di
ÂN

j=1 dj
� 1

N

!2

=
1
N

"

ÂN
i=1 d2i
4M2 � 1

N

#

.

so, given N, M, in both cases we seek a network topology that maximizes ÂN
i=1 d2i .

Lemma A.8 Given N,M, max{di}Ni=1
ÂN

i=1 d2i = max {C (N,M) , S (N,M)}, where
C (N,M) is the sum of squared degrees for the simple QC(N,M) and S (N,M) is the sum

of squared degrees for the simple QS(N,M).

Proof. Lemma A.8 follows from Theorem 2 of Ahlswede and Katona (1978), which

characterizes those graphs with N nodes and M edges that have a maximal number

of adjacent pairs of edges. Maximizing that quantity reduces to maximizing the

graph’s sum of squared degrees arising from non-self-loop edges.

Theorem A.7 then follows from Lemma A.8. For a particular pair (N,M),

if QC(N,M) is inadmissible due to lack of connectedness, QS(N,M) maximizes
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the sum of squared degrees for the graph (as it satisfies Lemma 2 of Ahlswede and

Katona (1978)). ⇤

Proof of Theorem A.8

Suppose that [w (Ā0)]T 6= [w (Ā)]T R for every permutation matrix R. Assign each

element [w (Ā0)]j an integer k 2 {1, . . . ,N} so that [w (Ā0)]kj  [w (Ā0)]k
0
j0 whenever

k < k0, and construct the ordered multiset
n

[w (Ā0)]kj
oN

k=1
of weakly increasing

weights, in which [w (Ā0)]kj is the kth element of the set. Similarly, assign each

element [w (Ā)]j an integer k 2 {1, . . . ,N} so that [w (Ā)]kj  [w (Ā)]k
0
j0 whenever

k < k0, and construct the ordered multiset
n

[w (Ā)]kj

oN

k=1
of weakly increasing

weights, in which [w (Ā)]kj is the k
th element of the set. Since [w (Ā0)]T 6= [w (Ā)]T R

for every possible permutation matrix R,
n

[w (Ā0)]kj
oN

k=1
6=
n

[w (Ā)]kj

oN

k=1
. Choose

the smallest integer ` 2 {1, . . . ,N} for which [w (Ā0)]`j 6= [w (Ā)]`j0 and [w (Ā0)]`�1
j =

[w (Ā)]`�1
j0 . Define T0 = Â`

k=1 [w (Ā0)]kj and T = Â`
k=1 [w (Ā)]kj . Set

t 2 (min{T0, T},max{T0, T}). Then, when n = 1,

�

�

�

GX(Ā0,N,n)(t)� GX(Ā,N,n)(t)
�

�

�

=
1
N
,

so GX(Ā0,N,n)(t) 6= GX(Ā,N,n)(t) for all t 2 R and n 2 {0, . . . ,N} ✓ Z+.

Now suppose that [w (Ā0)]T = [w (Ā)]T R for some permutation matrix R.
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Then,

GX(Ā0,N,n)(t) =
1

|B (N, n)| Â
b(N,n)2B(N,n)

1x(Ā0,b,N,n)t

=
1

|B (N, n)| Â
b(N,n)2B(N,n)

1
[w(Ā0)]Tb(N,n)t

=
1

|B (N, n)| Â
b(N,n)2B(N,n)

1
[w(Ā)]TRb(N,n)t

=
1

|B (N, n)| Â
b(N,n)2B(N,n)

1
[w(Ā)]Tb(N,n)t

=
1

|B (N, n)| Â
b(N,n)2B(N,n)

1x(Ā,b,N,n)t

= GX(Ā,N,n)(t)

for all t 2 R and n 2 {0, . . . ,N} ✓ Z+. ⇤

Proof of Corollary A.5

Replace the pair
⇣

w (Ā) ,GX(Ā,N,n)(t)
⌘

in the proof of Theorem A.8 with each

pair specified in the statement of Corollary A.5. For example, to demonstrate

that G
bFavg(Ā0,N,n)(t) = G

bFavg(Ā,N,n)(t), replace
⇣

w (Ā) ,GX(Ā,N,n)(t)
⌘

in the proof of

Theorem A.8 with
⇣

d�
w (Ā) ,G

bFavg(Ā,N,n)(t)
⌘

. Corollary A.5 then follows. ⇤

Proof of Theorem A.9

To demonstrate (1): From Corollary A.5, G
bFi(Ā0,N,n)(t) = G

bFi(Ā,N,n)(t) if and only

if [wa,i (Ā0)]T = [wa,i (Ā)]T R for some permutation matrix R. Since [wa,i (Ā)]T ⌘
[Ā]i⇤, [wa,i (Ā0)]T = [wa,i (Ā)]T R if and only if [Ā0]i⇤ = [Ā]i⇤ R. Similarly, since
h

w(q)
a,i (Ā)

iT ⌘ [Āq]i⇤, G
bF(q)i (Ā0,N,n)

(t) = G
bF(q)i (Ā,N,n)

(t) if and only if
⇥

(Ā0)q
⇤

i⇤ =

[Āq]i⇤ R.
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To demonstrate (2): From Corollary A.5, G
bFavg(Ā0,N,n)(t) = G

bFavg(Ā,N,n)(t) if

and only if [d�
w (Ā0)]T = [d�

w (Ā)]T R for some permutation matrix R, that is, if

and only if 1TĀ0 = 1TĀR. Similarly, G
bF(q)avg(Ā0,N,n)

(t) = G
bF(q)avg(Ā,N,n)

(t) if and only if
h

d� (q)
w (Ā0)

iT
=
h

d� (q)
w (Ā)

iT
R for some permutation matrix R, that is, if and only

if 1T (Ā0)q = 1TĀqR.

To demonstrate (3): From Corollary A.5, G
bF(•)(Ā0,N,n)(t) = G

bF(•)(Ā,N,n)(t) if

and only if [w• (Ā0)]T = [w• (Ā)]T R for some permutation matrix R. [w• (Ā)]T =

[w• (Ā)]T Ā, so [w• (Ā0)]T = [w• (Ā)]T R if and only if [w• (Ā0)]T RT =

[w• (Ā0)]T RTĀ, or equivalently, [w• (Ā0)]T = [w• (Ā0)]T RTĀR, that is, if and

only if Ā0 and RTĀR have a common dominant left eigenpair. Note that both Ā

and Ā0 are row-stochastic and primitive. Since Ā is row-stochastic and primitive,

RTĀR is also row-stochastic and primitive, with primitivity of RTĀR observable

from the structural isomorphism of G (Ā) and G �RTĀR
�

. Therefore, the dominant

left eigenpair of RTĀR is also unique, with the unit-normalized left eigenvector

paired to an eigenvalue of value 1. ⇤

Proof of Theorem A.10

Demonstrating that G
bF(Ā0,N,n) (t) = G

bF(Ā,N,n) (t) if and only if there exists a per-

mutation matrix R such that Ā0 = ĀR: Suppose that Ā0 6= ĀR for every permu-

tation matrix R. Then multiset {[Ā0]⇤1 , . . . , [Ā0]⇤N} 6= {[Ā]⇤1 , . . . , [Ā]⇤N}. Set

n = 1. G
bF(Ā0,N,n) (t) = 1

N ÂN
j=1 1[Ā0]⇤jt and G

bF(Ā,N,n) (t) = 1
N ÂN

j=1 1[Ā]⇤jt, so

G
bF(Ā0,N,n) (t) 6= G

bF(Ā,N,n) (t).
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Now suppose that Ā0 = ĀR for some permutation matrix R. Then

G
bF(Ā0,N,n) (t) =

1
|B (N, n)| Â

b(N,n)2B(N,n)
1Ā0b(N,n)t

=
1

|B (N, n)| Â
b(N,n)2B(N,n)

1ĀRb(N,n)t

=
1

|B (N, n)| Â
b(N,n)2B(N,n)

1Āb(N,n)t

= G
bF(Ā,N,n) (t) .

To demonstrate that G
bF(q)(Ā0,N,n) (t) = G

bF(q)(Ā,N,n) (t) if and only if there exists

a permutation matrix R such that (Ā0)q = ĀqR, replace Ā0 with (Ā0)q and replace

Ā with (Ā)q in the above proof. ⇤

Proof of Theorem A.11

Note that

G
bFS(Ā,N,n) (t) =

1
|B (N, n)| Â

b(N,n)2B(N,n)
1Sbf(Ā,b,N,n)t

=
1

|B (N, n)| Â
b(N,n)2B(N,n)

1S Āb(N,n)t

= G
bF(SĀ,N,n) (t) .

Therefore, replace Ā with SĀ and replace Āq with SĀq in the proof of Theorem A.10.

Theorem A.11 then follows. ⇤

Proof of Theorem A.12

The expression that approximates wT
• (e) following a perturbation Ā (e) applies the

work of Conlisk (1985) on perturbation theory for finite Markov chains. Define the
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fundamental matrix (Kemeny and Snell, 1960) Z =
�

I� Ā+ 1pT��1, for any N ⇥ 1

vector p such that pT1 6= 0. Matrix Z always exists because det
�

I� Ā+ 1pT� 6= 0

(see Conlisk, 1985, and Theorem 29 in Brauer, 1952). For the perturbation Ā (e) =

Ā+ e E,
∂Z (e)

∂e

�

�

�

�

�

e=0

= Z

 

∂Ā (e)
∂e

�

�

�

�

�

e=0

!

Z = ZEZ.

Since wT
• = pTZ,

∂wT
• (e)
∂e

�

�

�

�

�

e=0

= bT

 

∂Z (e)
∂e

�

�

�

�

�

e=0

!

= bTZEZ = wT
•EZ.

Next, to obtain the exact expression for [d�
w (e)]T, observe that

⇥

d�
w (e)

⇤T
=

1
N
1TĀ (e) =

1
N
1T (Ā+ e E) =

⇥

d�
w
⇤T

+
e

N

⇣

1TE
⌘

,

and to obtain the exact expression for [wa,i (e)]
T, 8i 2 {1, . . . ,N}, observe that

[wa,i (e)]
T = [Ā (e)]i⇤ = [Ā+ e E]i⇤ = [wa,i]

T + e [E]i⇤ .

Finally, to obtain the exact expression for
h

d� (q)
w (e)

iT
, observe that

h

d� (q)
w (e)

iT
=

1
N
1TĀq (e) =

1
N
1T (Āq + e E) =

h

d� (q)
w

iT
+

e

N

⇣

1TE
⌘

,

and to obtain the exact expression for
h

w(q)
a,i (e)

iT
, 8i 2 {1, . . . ,N}, observe that

h

w(q)
a,i (e)

iT
= [Āq (e)]i⇤ = [Āq + e E]i⇤ =

h

w(q)
a,i

iT
+ e [E]i⇤ . ⇤

Proof of Corollary A.6

For part (1), set E = ei
⇣

eTj � eTk
⌘

, where ei is the N ⇥ 1 unit vector whose ith

element equals 1 and all other elements equal zero. From Theorem A.12, the rth
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element of ∂wT
•(e)
∂e

�

�

�

�

e=0
is

∂

⇥

wT
• (e)

⇤

r
∂e

�

�

�

�

�

e=0

= wT
•EZer =

h

wT
•

i

i

⇣

[Z]jr � [Z]kr
⌘

.

Define the N ⇥ N mean first passage matrix M = 11T + Ā
�

M�Mdiag
�

, where

Mdiag = diag ([M]11 , . . . , [M]NN). From Conlisk (1985), for the vector wT
•,

[M]rs =

8

>

>

<

>

>

:

1
[wT

•]s
for r = s, and

[Z]ss�[Z]rs
[wT

•]s
for r 6= s.

Since the elements of M and wT
• are strictly positive, [Z]ss > [Z]rs for r 6= s. Thus,

setting r = j,
∂

⇥

wT
• (e)

⇤

j

∂e

�

�

�

�

�

e=0

=
h

wT
•

i

i

⇣

[Z]jj � [Z]kj
⌘

> 0,

and setting r = k,

∂

⇥

wT
• (e)

⇤

k
∂e

�

�

�

�

�

e=0

=
h

wT
•

i

i

⇣

[Z]jk � [Z]kk
⌘

< 0.

For part (2), first set

E = Â
k=1
k 6=j

akei
⇣

eTj � eTk
⌘

,

with ak � 0 for every k 2 {1, . . . ,N}, k 6= j, so that [E]ij > 0, [E]ik  0 for all k 6= j,
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and ÂN
k=1 [E]ik = 0. From Theorem A.12, the rth element of ∂wT

•(e)
∂e

�

�

�

�

e=0
is

∂

⇥

wT
• (e)

⇤

r
∂e

�

�

�

�

�

e=0

= wT
•

2

6

4

N

Â
k=1
k 6=j

akei
⇣

eTj � eTk
⌘

3

7

5

Zer =

2

6

4

N

Â
k=1
k 6=j

akwT
•ei

⇣

eTj � eTk
⌘

3

7

5

Zer

=
N

Â
k=1
k 6=j

ak

h

wT
•

i

i

⇣

[Z]jr � [Z]kr
⌘

.

Setting r = j,

∂

⇥

wT
• (e)

⇤

j

∂e

�

�

�

�

�

e=0

=
N

Â
k=1
k 6=j

ak

h

wT
•

i

i

⇣

[Z]jj � [Z]kj
⌘

> 0.

Next consider

E = � Â
k=1
k 6=j

akei
⇣

eTj � eTk
⌘

,

with ak � 0 for every k 2 {1, . . . ,N}, k 6= j, so that [E]ij < 0, [E]ik � 0 for all k 6= j,

and ÂN
k=1 [E]ik = 0. Then,

∂

⇥

wT
• (e)

⇤

j

∂e

�

�

�

�

�

e=0

= �
N

Â
k=1
k 6=j

ak

h

wT
•

i

i

⇣

[Z]jj � [Z]kj
⌘

< 0. ⇤

Proof of Theorem A.13

The variance of X (Ā,N, n) follows directly from Theorem 1.9, and the asymptotic

expansion for X (Ā,N, n) follows directly from Theorem 1.13. With Bi ⇠ Bern
� n
N
�

,

EX (Ā (e) ,N, n) = E [w1 (e) B1 + w2 (e) B2 + · · ·+ wN (e) BM]

=
n
N

N

Â
i=1

wi (e)

=
n
N
. ⇤
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Appendix B

Appendix to Chapter 2

B.1 Proofs

Proof of Lemma 2.1

First method of proof: EbFavg (Z,N, n) = E
⇣

[d�
w (Z)]T B (N, n)

⌘

, where B (N, n) is a

random vector whose elements are Bi ⇠ Bern
� n
N
�

, i 2 {1, . . . ,N} and [d�
w (Z)]T 1 =

k. Therefore,

EbFavg (Z,N, n) = E
�⇥

d�
w (Z)

⇤

1 B1 +
⇥

d�
w (Z)

⇤

2 B2 + . . .+
⇥

d�
w (Z)

⇤

N BN
�

=
N

Â
i=1

⇥

d�
w (Z)

⇤

i EBi

=
kn
N

. ⇤
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Second method of proof:

EbFavg (Z,N, n) =
1

|B (N, n)| Â
b(N,n)2B(N,n)

⇥

d�
w (Z)

⇤T b (N, n)

=
1

|B (N, n)|
N

Â
i=1

|{b 2 B (N, n) : bi = 1}| ⇥d�
w (Z)

⇤

i

=
|{b 2 B (N, n) : bi = 1}|

|B (N, n)|
N

Â
i=1

⇥

d�
w (Z)

⇤

i =

 

(Nn )⇥ n
N

(Nn )

!

⇥ k =
kn
N

.

By symmetry, |{b 2 B (N, n) : bi = 1}| = ���b 2 B (N, n) : bj = 1
 

�

�,

8i, j 2 {1, . . . ,N}. ⇤

Proof of Lemma 2.2

The proof of this Lemma immediately follows from the proof of Theorem 1.9.

In Chapter 1 of this dissertation, VarD�
w (Z) = 1

N ÂN
i=1

⇣

[d�
w (Z)]i � 1

N

⌘2
because

1Td�
w (Z) = 1, while in the present chapter, VarD�

w (Z) = 1
N ÂN

i=1

⇣

[d�
w (Z)]i � k

N

⌘2

because 1Td�
w (Z) = k. ⇤

Proof of Lemma 2.3

The proof of this Lemma immediately follows from the proof of Theorem 1.10. ⇤

Proof of Lemma 2.4

The scalar bfavg (Z,b,N, n) = [d�
w (Z)]T b (N, n) is invariant to configuration if and

only if [d�
w (Z)]T b (N, n) = [d�

w (Z)]T b0 (N, n) for all b (N, n) ,b0 (N, n) 2 B (N, n),

with this relation holding for each integer n 2 [0,N]. Let n = 1, and define ei

to be the ith unit vector whose ith element equals 1 and all other elements equal

zero. Then [d�
w (Z)]T b (N, 1) = [d�

w (Z)]T b0 (N, 1) if and only if [d�
w (Z)]T ei =
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[d�
w (Z)]T ej, that is, if and only if [d�

w (Z)]i = [d�
w (Z)]j for all i, j 2 {1, . . . ,N}. Since

1Td�
w (Z) = k, [d�

w (Z)]i =
k
N for all i 2 {1, . . . ,N}. Given that d�

w (Z) = k
N1 when

bfavg (Z,b,N, n) is invariant to configuration, bfavg (Z,b,N, n) = [d�
w (Z)]T b (N, n) =

k
N1Tb (N, n) = kn

N . ⇤

Proof of Lemma 2.5

The proof of this Lemma immediately follows from the proof of Theorem 1.13. ⇤

Proof of Lemma 2.6

The proof of Lemma 2.6 makes use of the following result from Erdös and Rényi

(1959), with notation modified for the present work:

Lemma B.1 (Erdös and Rényi (1959), Theorem 1) Consider the infinite triangular ma-

trix of real elements

w0
11

w0
21 w0

22

· · ·
· · · ·
· · · · ·

w0
N1 w0

N2 · · · w0
NN

· · · · · · ·
with w0

N denoting the Nth row of the matrix and ÂN
j=1 w

0
Nj = 0. For any real value t,

determine T
⇣

w0
N,N, n, t

⌘

, that is, the total number of sums

a
⇣

w
0
N,N, n

⌘

= w
0
Ni1 + w

0
Ni2 + · · ·+ w

0
Nin , 1  i1 < i2 < · · · < in  N,

whose value does not exceed ts
⇣

w0
N,N, n

⌘

⌘ t
q

n
N
�

1� n
N
�

ÂN
j=1 w

0 2
Nj. Let CDF
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GA(w0
N ,N,n)

s(w0
N ,N,n)

(t) =
T
⇣

w0
N ,N,n,t

⌘

(Nn )
. With

k

⇣

w
0
N,N, n, e0

⌘

⌘ 1
ÂN

j=1 w
0 2
Nj

Â
j2{1,...,N} s.t.

�

�

�

w0
Nj

�

�

�

>e

0
s

⇣

w0
N ,N,n

⌘

w
0 2
Nj

if limN!• k

⇣

w0
N,N, n, e0

⌘

= 0 for any e

0 > 0, then limN!• GA
s

(t) = F (t) for any real

t, where F (·) denotes the standard normal CDF.

For a given population size N, set w0
N = d�

N,w (Z) � k
N , where d�

N,w (Z)

is the vector of average weighted in-degrees (d�
w (Z)) discussed in the text, and

subscript N is added to make the population size explicit. Then ÂN
j=1 w

0
Nj =

ÂN
j=1

✓

h

d�
N,w (Z)

i

j
� k

N

◆

= 0. Scalar quantity

bfavg (Z,b,N, n)� kn
N

=
h

d�
N,w (Z)

iT
b (N, n)� kn

N

=

✓

h

d�
N,w (Z)

i

i1
� k

N

◆

+

✓

h

d�
N,w (Z)

i

i2
� k

N

◆

+ · · ·+
✓

h

d�
N,w (Z)

i

in
� k

N

◆

= w
0
Ni1 + w

0
Ni2 + · · ·+ w

0
Nin ,

where 1  i1 < i2 < · · · < in  N, given a configuration b (N, n) 2 B (N, n). Thus,
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by Lemma B.1,

GA(w0
N ,N,n)

s(w0
N ,N,n)

(t) =
T
⇣

w0
N,N, n, t

⌘

(Nn )

=
1
(Nn )

Â
81i1<i2<···<inN

1w0
Ni1

+w0
Ni2

+···+w0
Nints(w0

N ,N,n)

=
1
(Nn )

Â
b(N,n)2B(N,n)

1
bfavg(Z,b,N,n)� kn

N ts(w0
N ,N,n)

= G
bFavg(Z,N,n)� kn

N
s(w0

N ,N,n)

(t),

so limN!• G
bFavg(Z,N,n)� kn

N
s(w0

N ,N,n)

(t) = F (t), where s

⇣

w0
N,N, n

⌘

=

s

n
N
�

1� n
N
�

ÂN
j=1

✓

h

d�
N,w (Z)

i

j
� k

N

◆2
. ⇤

Proof of Proposition 2.1

This Proposition follows immediately from Equations 2.2-2.5 and Lemma 2.1. ⇤

Proof of Proposition 2.2

This Proposition follows immediately from Equations 2.2-2.5 and Lemma 2.2. ⇤

Proof of Proposition 2.3

This Proposition follows immediately from Equations 2.2-2.5 and Lemma 2.3. ⇤

Proof of Proposition 2.4

Given Equations 2.2-2.5, yagg (Z,b,N, n, 0), m (Z,b,N, n, 0), yagg (Z,b,N, n, 1), and

m (Z,b,N, n, 1) are all invariant to configuration if and only if bfavg (Z,b,N, n) is
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invariant to configuration. This Proposition then follows from Lemma 2.4. ⇤

Proof of Proposition 2.5

Given Equation 2.2 for Yagg (Z,N, n, 0):

GYagg(Z,N,n,0)�EYagg(Z,N,n,0)

(VarYagg(Z,N,n,0))1/2
(t) = Pr

"

Yagg (Z,N, n, 0)� EYagg (Z,N, n, 0)
�

VarYagg (Z,N, n, 0)
�1/2  t

#

= Pr

2

6

4

ynoagg + g1
N2

e

N�n

⇣

bFavg (Z,N, n)� kn
N

⌘

� ynoagg

g1
N2

e

N�n

⇣

Var bFavg (Z,N, n)
⌘1/2  t

3

7

5

= G
bFavg(Z,N,n)�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))1/2
(t) .

Given Equation 2.3 for M (Z,N, n, 0):

GM(Z,N,n,0)�EM(Z,N,n,0)
(VarM(Z,N,n,0))1/2

(t) = Pr

"

M (Z,N, n, 0)� EM (Z,N, n, 0)
(VarM (Z,N, n, 0))1/2

 t

#

= Pr

2

6

4

g1
N2

N�n

⇣

bFavg (Z,N, n)� kn
N

⌘

g1
N2

N�n

⇣

Var bFavg (Z,N, n)
⌘1/2  t

3

7

5

= G
bFavg(Z,N,n)�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))1/2
(t) .

Given Equation 2.4 for Yagg (Z,N, n, 1):

GYagg(Z,N,n,1)�EYagg(Z,N,n,1)

(VarYagg(Z,N,n,1))1/2
(t) = Pr

"

Yagg (Z,N, n, 1)� EYagg (Z,N, n, 1)
�

VarYagg (Z,N, n, 1)
�1/2  t

#

= Pr

2

6

4

ynoagg + g1Ne

bFavg (Z,N, n)� ynoagg � g1kne

g1Ne

⇣

Var bFavg (Z,N, n)
⌘1/2  t

3

7

5

= G
bFavg(Z,N,n)�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))1/2
(t) .
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Given Equation 2.5 for M (Z,N, n, 1):

GM(Z,N,n,1)�EM(Z,N,n,1)
(VarM(Z,N,n,1))1/2

(t) = Pr

"

M (Z,N, n, 1)� EM (Z,N, n, 1)
(VarM (Z,N, n, 1))1/2

 t

#

= Pr

2

6

4

g1NbFavg (Z,N, n)� g1kn

g1N
⇣

Var bFavg (Z,N, n)
⌘1/2  t

3

7

5

= G
bFavg(Z,N,n)�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))1/2
(t) .

The Proposition then follows from Lemma 2.5. ⇤

Proof of Proposition 2.6

From the proof of Proposition 2.5, we have that

GYagg(Z,N,n,`)�EYagg(Z,N,n,`)

(VarYagg(Z,N,n,`))1/2
(t) = G

bFavg(Z,N,n)�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))1/2
(t) and

GM(Z,N,n,`)�EM(Z,N,n,`)
(VarM(Z,N,n,`))1/2

(t) = G
bFavg(Z,N,n)�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))1/2
(t)

for ` 2 {0, 1}. Therefore, by Lemma 2.6, if limN!• kN (e0) = 0 for any e

0 > 0, then

lim
N!•

GYagg(Z,N,n,`)�EYagg(Z,N,n,`)

(VarYagg(Z,N,n,`))1/2
(t) = F (t) and

lim
N!•

GM(Z,N,n,`)�EM(Z,N,n,`)
(VarM(Z,N,n,`))1/2

(t) = F (t)

for ` 2 {0, 1} and for all real t. ⇤

Proof of Proposition 2.7

The statements that Pr
h

Yagg (Z,N, n, 0) < ynoagg
i

= Pr [M (Z,N, n, 0) < 0] =

Pr
h

bFavg (Z,N, n) < kn
N

i

and Pr
h

Yagg (Z,N, n, 1) < ynoagg
i

= Pr [M (Z,N, n, 1) < 0] =

Pr
h

bFavg (Z,N, n) < 0
i

follow from Equations 2.2-2.5. From Lemma 2.5, provided
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that condition (c) holds, G
bFavg(Z,N,n)�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))1/2
(t) ⇡ J (Z,N, n, t) and therefore

G
bFavg(Z,N,n) (t) ⇡ J

✓

Z,N, n, t�EbFavg(Z,N,n)

(Var bFavg(Z,N,n))
1/2

◆

. ⇤

Proof of Proposition 2.8

For every n 2 {1, . . . ,N � 1}, we show that there is a positive probability of both a

negative multiplier and an aggregate action below the no-intervention level, ynoagg,

provided that d�
w (Z) 6= k

N1. Now, Pr [M (Z,N, n, 0) < 0] > 0 if and only if there

exists a configuration b (N, n) 2 B (N, n) for which bfavg (Z,b,N, n) < kn
N ; the same

condition is required for Pr
h

Yagg (Z,N, n, 0) < ynsagg
i

> 0. We therefore prove that,

for every integer n 2 {1, . . . ,N � 1}, min supp bFavg (Z,N, n) < kn
N .

Order the elements of d�
w (Z) to form the vector ew, with ewi  ewi0 if and

only if i  i0. 1Td�
w (Z) = k, so 1T ew = k as well. We want to show that

min supp bFavg (Z,N, n) = Ân
i=1 ewi <

kn
N for every integer n 2 {1, . . . ,N � 1}. The

proof follows by induction. We first show that ew1 < k
N and ew1 + ew2 < 2k

N ; then,

given that ew1 + · · ·+ ewn�1 <
k(n�1)

N , we prove that ew1 + · · ·+ ewn < kn
N for a general

n 2 {3, . . . ,N � 1}.
Showing that ew1 <

k
N : Suppose that ew1 =

k
N . With ewi � ew1 8i 2 {2, . . . ,N},

ÂN
i=1 ewi = k if and only if ew1 = · · · = ewN = k

N , which we have ruled out by

assumption. Suppose that ew1 > k
N . With ewi � ew1 8i 2 {2, . . . ,N}, ÂN

i=1 ewi > k.

Since we must have ÂN
i=1 ewi = k, it follows that ew1 <

k
N .

Showing that ew1 + ew2 < 2k
N : Since ew1 < k

N , set ew1 = k
N � k for positive k.

We want ew2 <
k
N + k so that ew1 + ew2 <

2k
N . Suppose that ew2 � k

N + k. Then ewi �
k
N + k 8i 2 {3, . . . ,N}, and ÂN

i=1 ewi = ew1 + ew2 + ÂN
i=3 ewi � 2k

N + (N � 2)
⇣

k
N + k

⌘

=

k+ (N � 2) k > k. Since we must have ÂN
i=1 ewi = k, it follows that ew1 + ew2 <

2k
N .

Showing that ew1 + · · ·+ ewn < kn
N for a general integer n 2 {3, . . . ,N � 1}:
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Suppose that ew1 + · · · + ewn�1 < k(n�1)
N . Set ew1 + · · · + ewn�1 = k(n�1)

N � k

0 for

positive k

0. We want ewn < k
N + k

0. Suppose that ewn � k
N + k

0. Then ewi �
k
N + k

0 for i 2 {n+ 1, . . . ,N} and ÂN
i=1 ewi = Ân�1

i=1 ewi + ÂN
i=n ewi � k(n�1)

N � k

0 +

(N � n+ 1)
⇣

k
N + k

0
⌘

= k+ (N � n) k

0 > k. Therefore, ewn < k
N + k

0 and ew1 + · · ·+
ewn < kn

N .

Therefore, for every n 2 {1, . . . ,N � 1}, provided that d�
w (Z) 6= k

N1,

min supp bFavg (Z,N, n) < kn
N and we thus have Pr [M (Z,N, n, 0) < 0] =

Pr
h

Yagg (Z,N, n, 0) < ynsagg
i

> 0. ⇤

Proof of Proposition 2.9

The proof of Proposition 2.9 follows from the proof of Theorem 1 in Ballester,

Calvó-Armengol, and Zenou (2006) coupled with Remarks 2 and 3. ⇤

Proof of Proposition 2.10

In a setting with transfers,

Yagg

⇣

�S�1,N, n, 0
⌘

= ynoagg+

yNe



bFavg
⇣

�S�1,N, n
⌘

� n
N � n

⇣

k� bFavg
⇣

�S�1,N, n
⌘⌘

�

= ynoagg +
yN2

e

N � n



bFavg
⇣

�S�1,N, n
⌘

� kn
N

�

.

In a setting with stimulus,

Yagg

⇣

�S�1,N, n, 1
⌘

= ynoagg + yNe

bFavg
⇣

�S�1,N, n
⌘

.

M
��S�1,N, n, 0

�

=
dYagg(�S�1,N,n,0)

de

and M
��S�1,N, n, 1

�

=
dYagg(�S�1,N,n,1)

de

. ⇤
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Proof of Proposition 2.11

We first define an M-matrix:

Definition B.1 Matrix Z is an M-matrix if it has the form Z = sI �Q, with s > 0,

Q � 0, and s � r (Q). Matrix Z is a non-singular M-matrix if s > r (Q).

In environments without strategic substitutes, matrix �S is an M-matrix: s =

�s and Q = S � sI. Provided that �s > r (S � sI), matrix �S is a non-

singular M-matrix. Then (�S)�1 � 0. With d�
w
��S�1� = 1

N
��S�1�T 1, it fol-

lows that d�
w
��S�1� � 0. Given the expressions for Yagg

��S�1,N, n, 1
�

and

M
��S�1,N, n, 1

�

in Proposition 2.10, Yagg
��S�1,N, n, 1

� � ynoagg with probability

1, and M
��S�1,N, n, 1

� � 0 with probability 1. ⇤

Proof of Proposition 2.12

In the absence of any network-based interaction, S = sI, which makes �S�1 = � 1
s

I,

d�
w
��S�1� = � 1

Ns

1, and k = � 1
s

. As a result, bFavg
��S�1,N, n

�

= � n
Ns

> 0 with

probability 1. Given the expressions for aggregate output and the corresponding

economic multiplier in Proposition 2.10, we obtain our result. ⇤

Proof of Proposition 2.13

When 1TS = d1T, 1TSS�1 = d1TS�1, so 1TS�1 = 1
d

1T, and the sum of each

column of S�1 is 1
d

. We define d�
w
��S�1� equal to � 1

N
�

S�1�T 1. Each element of

d�
w
��S�1� has the same value, and since we set 1Td�

w
��S�1� = k, d�

w
��S�1� =

k
N1 with k = � 1

d

. Then, bFavg
��S�1,N, n

�

= kn
N with probability 1, and given the

expressions for aggregate output and the corresponding economic multiplier in

Proposition 2.10, our result follows. ⇤
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Proof of Proposition 2.14

For all n 2 {1, . . . ,N � 1}, Yagg

⇣

� (S0)�1 ,N, n, 0
⌘

⌫ Yagg
��S�1,N, n, 0

�

if

yagg
⇣

� (S0)�1 ,b,N, n, 0
⌘

� yagg
��S�1,b,N, n, 0

�

for every configuration

b 2 B (N, n). Similarly, for all n 2 {1, . . . ,N � 1}, Yagg

⇣

� (S0)�1 ,N, n, 1
⌘

⌫
Yagg

��S�1,N, n, 1
�

if yagg
⇣

� (S0)�1 ,b,N, n, 1
⌘

� yagg
��S�1,b,N, n, 1

�

for every

configuration b 2 B (N, n). Each configuration b (N, n) of stimulus represents an

adjustment to the wealth vector: w ! w + r. We therefore wish to show that, for

any given vector w0 = w+ r, the aggregate action in the S0 environment exceeds the

aggregate action in the S environment. Define y⇤
⇣

� (S0)�1 ,b,N, n
⌘

as the equilib-

rium vector of agent actions in the S0 environment with wealth vector w0 and cor-

responding aggregate action yagg
⇣

� (S0)�1 ,b,N, n
⌘

= 1Ty⇤
⇣

� (S0)�1 ,b,N, n
⌘

.

Similarly define y⇤
��S�1,b,N, n

�

.

Set S0 = S + D. [D]ij � 0 for all pairs (i, j) with at least one strict in-

equality [D]ij > 0. With b > lr (G) and b

0 > l

0r (G0), y⇤
⇣

� (S0)�1 ,b,N, n
⌘

,

y⇤
��S�1,b,N, n

�

> 0. We also have that �Sy⇤
��S�1,b,N, n

�

= yw0 and

�S0y⇤
⇣

� (S0)�1 ,b,N, n
⌘

= yw0. Decompose S as S = �bI � gU + lG, and

decompose S0 as S0 = b

0I� g

0U+ l

0G0, where U = 11T.

For any vector w0, � (S0 �D) y⇤
��S�1,b,N, n

�

= yw, and therefore

�

b

0I� l

0G0� y⇤
⇣

�S�1,b,N, n
⌘

= yw0 � g

0Uy⇤
⇣

�S�1,b,N, n
⌘

�Dy⇤
⇣

�S�1,b,N, n
⌘

. (B.1)

We also have �S0y⇤
⇣

� (S0)�1 ,b,N, n
⌘

= yw0, and therefore

�

b

0I� l

0G0� y⇤
⇣

� �S0��1 ,b,N, n
⌘

= yw0 � g

0Uy⇤
⇣

� �S0��1 ,b,N, n
⌘

. (B.2)
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Setting g

0 = 0 and subtracting Equation B.1 from Equation B.2 gives

�

b

0I� l

0G0�
h

y⇤
⇣

� �S0��1 ,b,N, n
⌘

� y⇤
⇣

�S�1,b,N, n
⌘i

= Dy⇤
⇣

�S�1,b,N, n
⌘

.

(b

0I� l

0G0) = l

0
⇣

b

0
l

0 I�G0
⌘

, with l

0 > 0.
⇣

b

0
l

0 I�G0
⌘

is an M-matrix that is non-

singular when b

0
l

0 > r (G0), which immediately follows from the initial assumptions.

Therefore,
⇣

b

0
l

0 I�G0
⌘

is inverse-positive, and

y⇤
⇣

� �S0��1 ,b,N, n
⌘

� y⇤
⇣

�S�1,b,N, n
⌘

=
�

l

0��1
✓

b

0

l

0 I�G0
◆�1

Dy⇤
⇣

�S�1,b,N, n
⌘

> 0,

so for any vector of wealth w0, y⇤
⇣

� (S0)�1 ,b,N, n
⌘

> y⇤
��S�1,b,N, n

�

. ⇤

Proof of Proposition 2.15

Set S0 = S + D, with [D]ij � 0 for all pairs (i, j) and at least one strict in-

equality [D]ij > 0. Also set w = w1. We have �Sy⇤
��S�1� = yw1 and

�S0y⇤
⇣

� (S0)�1
⌘

= yw1 with y⇤
��S�1� , y⇤

⇣

� (S0)�1
⌘

> 0 since b > lr (G)

and b

0 > l

0r (G0). We decompose S and S0 as follows: S = �bI� gU+ lG and

S0 = �b

0I� g

0U+ l

0G0, with U = 11T.

Then, � (S0 �D) y⇤
��S�1� = yw1, and therefore

�

b

0I� l

0G0� y⇤
⇣

�S�1
⌘

= yw � g

0Uy⇤
⇣

�S�1
⌘

�Dy⇤
⇣

�S�1
⌘

. (B.3)

Meanwhile, �S0y⇤
⇣

� (S0)�1
⌘

= yw1, and therefore,

�

b

0I� l

0G0� y⇤
⇣

� �S0��1
⌘

= yw1� g

0Uy⇤
⇣

� �S0��1
⌘

. (B.4)
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Setting g

0 = 0 and subtracting Equation B.3 from Equation B.4 gives

�

b

0I� l

0G0�
⇣

y⇤
⇣

� �S0��1
⌘

� y⇤
⇣

�S�1
⌘⌘

= Dy⇤
⇣

�S�1
⌘

.

It follows that

y⇤
⇣

� �S0��1
⌘

� y⇤
⇣

�S�1
⌘

=
�

l

0��1
✓

b

0

l

0 I�G0
◆�1

Dy⇤
⇣

�S�1
⌘

> 0

since l

0 > 0 and
⇣

b

0
l

0 I�G0
⌘

is an M-matrix that is inverse-positive because
b

0
l

0 > r (G0) by assumption. Thus, y⇤
⇣

� (S0)�1
⌘

> y⇤
��S�1�.

Now, �Sy⇤
��S�1� = yw1 and �S0y⇤

⇣

� (S0)�1
⌘

= yw1. Since b > lr (G)

and b

0 > l

0r (G),

y⇤
⇣

�S�1
⌘

= yw

⇣

�S�1
⌘

1 and y⇤
⇣

� �S0��1
⌘

= yw

⇣

� �S0��1
⌘

1.

S,S0 are symmetric, so y⇤
��S�1� = yw

��S�1�T 1 = yNwd�
w
��S�1� and

y⇤
⇣

� (S0)�1
⌘

= yw

⇣

� (S0)�1
⌘T

1 = yNwd�
w

⇣

� (S0)�1
⌘

. Since y⇤
⇣

� (S0)�1
⌘

>

y⇤
��S�1�, it immediately follows that d�

w

⇣

� (S0)�1
⌘

> d�
w
��S�1�. Then

bFavg
⇣

� (S0)�1 ,N, n
⌘

⌫ bFavg
��S�1,N, n

�

for all n 2 {1, . . . ,N} and we obtain the

result. ⇤

Proof of Proposition 2.16

Agent i’s optimization problem is:

max
yi,q

ui,q = max
yi,q

�
N

Â
j=1

[Ā]ij

⇣

yi,q � [T]ij
�

yj,q�1
�

⌘2
.

From the first-order condition, ÂN
j=1 [Ā]ij y

⇤
i,q = ÂN

j=1 [Ā]ij [T]ij
�

yj,q�1
�

. By the row-

stochasticity of Ā, y⇤i,q = ÂN
j=1 [Ā]ij [T]ij

�

yj,q�1
�

, and so y⇤i,q = [Ā � T]i⇤ yq�1. It then

follows that y⇤q = (Ā � T)q y0. ⇤
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Proof of Proposition 2.17

Given that y⇤q = y1 for q < 0, the proof follows by induction. For q = 0, y⇤q =

y1+ (Ā �O)0 r = y1+ r. For q = 1, given Proposition 2.16, y⇤1 = (Ā �O) y0, so

y⇤i,1 = Â
j2{1,...,N}
s.t. [T]ij=F

[Ā]ij yj,0 + Â
j2{1,...,N}
s.t. [T]ij=D

[Ā]ij D
�

yj,0
�

= Â
j2{1,...,N}
s.t. [T]ij=F

[Ā]ij

⇣

y+ [r]j

⌘

+ Â
j2{1,...,N}
s.t. [T]ij=D

[Ā]ij

⇣

2y�
⇣

y+ [r]j

⌘⌘

= y+ Â
j2{1,...,N}
s.t. [T]ij=F

[Ā]ij [r]j � Â
j2{1,...,N}
s.t. [T]ij=D

[Ā]ij [r]j

= y+ [Ā �O]i⇤ r,

where [O]ij = 1 if [T]ij = F and [O]ij = �1 if [T]ij = D. It then follows that

y⇤1 = y1+ (Ā �O) r.

We now assume that y⇤q�1 = y1+ (Ā �O)q�1 r, and we demonstrate that
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y⇤q = y1+ (Ā �O)q r:

y⇤i,q = [Ā � T]i⇤ yq�1

= Â
j2{1,...,N}
s.t. [T]ij=F

[Ā]ij yj,q�1 + Â
j2{1,...,N}
s.t. [T]ij=D

[Ā]ij D
�

yj,q�1
�

= Â
j2{1,...,N}
s.t. [T]ij=F

[Ā]ij

✓

y+
h

(Ā �O)q�1
i

j⇤
r

◆

+ Â
j2{1,...,N}
s.t. [T]ij=D

[Ā]ij

✓

2y�
✓

y+
h

(Ā �O)q�1
i

j⇤
r

◆◆

= y+ Â
j2{1,...,N}
s.t. [T]ij=F

[Ā]ij

h

(Ā �O)q�1
i

j⇤
r � Â

j2{1,...,N}
s.t. [T]ij=D

[Ā]ij

h

(Ā �O)q�1
i

j⇤
r

= y+ [Ā �O]j⇤

✓

h

(Ā �O)q�1
i

j⇤
r

◆

= y+
⇥

(Ā �O)q
⇤

j⇤ r,

so y⇤q = y1+ (Ā �O)q r. ⇤

Proof of Proposition 2.18

The period-q aggregate action is:

yagg,q
�

(Ā �O)q ,b,N, n
�

= ynoagg + N
⇥

d�
w
�

(Ā �O)q
�⇤T

r.

In a setting with positive transfers to n agents and negative transfers to N � n

agents, [r]i = e if agent i is receiving a positive transfer, and [r]i = � ne

N�n if agent i
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is receiving a negative transfer. Therefore,

Yagg,q
�

(Ā �O)q ,N, n, 0
�

= ynoagg + Ne

bFavg
�

(Ā �O)q ,N, n
�

� N
ne

N � n

⇣

kq � bFavg
�

(Ā �O)q ,N, n
�

⌘

= ynoagg +
N2

e

N � n

✓

bFavg
�

(Ā �O)q ,N, n
�� kqn

N

◆

With Mq
�

(Ā �O)q ,N, n, 0
�

=
dYagg,q((Ā�O)q,N,n,0)

de

and IRFq
�

(Ā �O)q ,N, n, 0
�

=

Yagg,q
�

(Ā �O)q ,N, n, 0
�� ynoagg, the first part of the Proposition follows.

In a setting with stimulus, [r]i = e if agent i is receiving stimulus, and

[r]i = 0 if agent i is not receiving stimulus. Therefore,

Yagg,q
�

(Ā �O)q ,N, n, 1
�

= ynoagg + Ne

bFavg
�

(Ā �O)q ,N, n
�

.

With Mq
�

(Ā �O)q ,N, n, 1
�

=
dYagg,q((Ā�O)q,N,n,1)

de

and IRFq
�

(Ā �O)q ,N, n, 1
�

=

Yagg,q
�

(Ā �O)q ,N, n, 1
�� ynoagg, the second part of the Proposition follows. ⇤

Proof of Proposition 2.19

Set Ā �O = I. As a result, d�
w
�

(Ā �O)q
�

= 1
N1 and kq = 1 for all q 2 Z+. Then,

bFavg
�

(Ā �O)q ,N, n
�

= n
N with probability 1 for all q 2 Z+. The result follows from

Proposition 2.18. ⇤

Proof of Proposition 2.20

When 1T (Ā �O)q = kq1T, d�
w
�

(Ā �O)q
�

=
kq
N 1 and bFavg

�

(Ā �O)q ,N, n
�

=
kqn
N

with probability 1. Proposition 2.20 then follows from Proposition 2.18. ⇤
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Proof of Proposition 2.21

If (Ā0 �O0)q � (Ā �O)q P for some permutation matrix P, then
⇥

d�
w
�

(Ā0 �O0)q
�⇤T �

⇥

d�
w
�

(Ā �O)q
�⇤T P and bFavg

�

(Ā0 �O0)q ,N, n
� ⌫ bFavg

�

(Ā �O)q ,N, n
�

. Proposi-

tion 2.21 then follows from Proposition 2.18. ⇤

Proof of Lemma 2.7

By definition, d�
w
�

(Ā �O)q
�

= 1
N
⇥

(Ā �O)q
⇤T 1 and kq = 1Td�

w
�

(Ā �O)q
�

, so

Nkq = 1T
⇥

(Ā �O)q
⇤T 1 = ÂN

i=1 ÂN
j=1
⇥

(Ā �O)q
⇤

ij. kq 2 [�1, 1] for all q � 1

if and only if ÂN
i=1 ÂN

j=1
⇥

(Ā �O)q
⇤

ij 2 [�N,N] for all q � 1. When q = 1,

�Ā  Ā �O  Ā element-wise, so �N = 1T (�Ā) 1  1T (Ā �O) 1  1TĀ1 = N,

and ÂN
i=1 ÂN

j=1 [Ā �O]ij 2 [�N,N].

For q > 1, [Āq]ij,
⇥

(Ā �O)q
⇤

ij, and � [Āq]ij are each the sum of a collection

of terms, with each term a product of elements [Ā]``0 . The collection of terms,

ignoring sign, is the same for [Āq]ij,
⇥

(Ā �O)q
⇤

ij, and � [Āq]ij. For [Ā
q]ij, all of the

terms have a positive sign; for � [Āq]ij, all of the terms have a negative sign; and

for
⇥

(Ā �O)q
⇤

ij, when Ā �O 6= Ā and Ā �O 6= �Ā, the terms have a mixture of

positive and negative signs. Therefore, �Āq  (Ā �O)q  Āq element-wise. Ā is

row-stochastic, with row stochasticity preserved under matrix multiplication, so

1TĀq1 = N. For q > 1, �N = 1T (�Āq) 1  1T (Ā �O)q 1  1TĀq1 = N, and

ÂN
i=1 ÂN

j=1
⇥

(Ā �O)q
⇤

ij 2 [�N,N]. ⇤
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Proof of Proposition 2.22

From Proposition 2.18, Mq
�

(Ā �O)q ,N, n, 1
�

= NbFavg
�

(Ā �O)q ,N, n
�

. With

kq 2 [�1, 1], for every n 2 {1, . . . ,N � 1},

max
(Ā�O)q

h

max supp bFavg
�

(Ā �O)q ,N, n
�

i

= 1,

which occurs when
⇥

d�
w
�

(Ā �O)q
�⇤T

=

✓

0 0 . . . 0 1
◆

P for some permutation

matrix P. Meanwhile,

min
(Ā�O)q

h

min supp bFavg
�

(Ā �O)q ,N, n
�

i

= �1,

which occurs when
⇥

d�
w
�

(Ā �O)q
�⇤T

=

✓

0 0 . . . 0 �1
◆

P for some permuta-

tion matrix P. Consistent with
⇥

d�
w
�

(Ā �O)q
�⇤T

=

✓

0 0 . . . 0 1
◆

P is a positive

star graph, and consistent with
⇥

d�
w
�

(Ā �O)q
�⇤T

=

✓

0 0 . . . 0 �1
◆

P is a neg-

ative star graph. ⇤

Proof of Proposition 2.23

The proof of Proposition 2.23 follows immediately from Theorem 1.1. Provided

that Ā is primitive, limq!• [Āq]ij =
⇥

wT
•
⇤

j for all i 2 {1, . . . ,N}, and therefore

limq!• d�
w (Āq) = w• (Ā). ⇤

Proof of Proposition 2.24

If Ā is primitive, [Ā]ij > 0 if and only if [Ā]ji > 0, and all non-zero elements within

every row of Ā have the same value, then by Theorem 1.2, w• (Ā) = d
1Td . Since
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limq!• Āq = 1 [w• (Ā)]T, limq!• d�
w (Āq) = d

1Td . Setting Ā �O = Ā,

lim
q!•

Yagg,q (Āq,N, n, 0) = ynoagg +
N2

e

N � n
lim
q!•

✓

bFavg (Āq,N, n)� kqn
N

◆

.

limq!• kq = limq!• [d�
w (Āq)]T 1 = 1. When n = 1, limq!• bFavg (Āq,N, n) = D(Ā)

1Td ,

so

Pr


lim
q!•

Yagg,q (Āq,N, n, 0) < ynoagg

�

= Pr


lim
q!•

bFavg (Āq,N, n) <
kqn
N

�

= Pr


D (Ā)
1Td

<
1
N

�

= Pr


D (Ā) <
1Td
N

�

,

and the Proposition follows. ⇤

Proof of Proposition 2.25

We wish to compute limq!• (Ā �O)q. Graph G (Ā �O) = (V (Ā �O) , E (Ā �O)),

|V (Ā �O)| = N, is structurally balanced, so we can partition V (Ā �O) into

two disjoint subsets: V = V1 [ V2. Moreover, since G (Ā �O) is structurally

balanced and |Ā �O| = Ā, there exists an N ⇥ N diagonal matrix W for which

Ā = W (Ā �O)W. To make this equality hold, choose an ` 2 {1, 2} and set [W]ii = 1

for 8i 2 V` and [W]ii = �1 for 8i 2 V�`. Matrix W equals its inverse, W�1, so

Āq = (W (Ā �O)W)q = W (Ā �O)q W and (Ā �O)q = WĀqW. Therefore,

lim
q!•

(Ā �O)q = lim
q!•

WĀqW = W

✓

lim
q!•

Āq
◆

W = W1 [w• (Ā)]T W,

where [w• (Ā)]T Ā = [w• (Ā)]T. Specifically,
⇥

limq!• (Ā �O)q
⇤

ij = [w• (Ā)]j if

i, j 2 V` and
⇥

limq!• (Ā �O)q
⇤

ij = � [w• (Ā)]j if i 2 V` and j 2 V�` for ` 2 {1, 2}.
Equivalently, limq!• (Ā �O)q =

⇣

1 [w• (Ā)]T
⌘

�O, where [O]ij = 1 if i, j 2 V` and

[O]ij = �1 if i 2 V` and j 2 V�` for ` 2 {1, 2}. ⇤

325



www.manaraa.com

Proof of Proposition 2.26

Solving the representative consumer’s problem:

max
c1,...,cN

N

’
i=1

chi
i s.t.

N

Â
i=1

pici = w
N

Â
i=1

`i +
N

Â
i=1

pi.

Setting ÂN
i=1 `i = 1, the first-order condition is:

pici = hi

 

w+
N

Â
i=1

pi

!

. (B.5)

Solving the firm’s optimization problem:

max
x1i,...,xNi,`i

pixi �
N

Â
j=1

pjxji � w`i s.t. xi = Aai
i `

ai
i

 

N

’
j=1

x
[L]ji
ji

!

bi

.

Rewriting, we have:

max
x1i,...,xNi,`i

piA
ai
i `

ai
i

 

N

’
j=1

x
[L]ji
ji

!

bi

�
N

Â
j=1

pjxji � w`i.

The first-order conditions are:

w =
ai pixi
`i

(B.6)

and

pj =
[L]ji bi pixi

xji
. (B.7)

The profit of each firm is:

pi = pixi �
N

Â
j=1

pjxji � w`i.

From Equations B.6 and B.7,

pi = pixi �
N

Â
j=1

[L]ji bi pixi � ai pixi.
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Matrix L is column-stochastic, so

pi = (1� ai � bi) pixi = 0. (B.8)

From Equations B.5 and B.8,

ci =
hiw
pi

, (B.9)

and from Equation B.7,

xij =
[L]ij b j pjxj

pi
. (B.10)

Substituting the expressions for ci and xij in Equations B.9 and B.10 into the goods

market clearing condition, xi = ci + ÂN
j=1 xij, we have:

pixi = hiw+
N

Â
j=1

[L]ij b j pjxj.

Define yj = pjxj. Then y = hw+ Ldiag (b) y.

Lemma B.2 I� Ldiag (b) is invertible.

Proof. I� Ldiag (b) is an M-matrix. It is therefore invertible if 1 > r (Ldiag (b)).

We know that any matrix-induced norm satisfies the inequality kZk > |µ| for any
matrix Z with eigenvalue µ. We take the infinity norm of matrix (Ldiag (b))T:

�

�

�

(Ldiag (b))T
�

�

�

•
= max

i2{1,...,N}

N

Â
j=1

h

(Ldiag (b))T
i

ij
= max

i2{1,...,N}
bi

when L is column-stochastic. Since maxi2{1,...,N} bi 2 (0, 1), r (Ldiag (b)) < 1, and

I� Ldiag (b) is invertible.

Following Lemma B.2, we obtain y⇤ = (I� Ldiag (b))�1 hw. ⇤
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Proof of Proposition 2.27

The proof of Proposition 2.27 immediately follows from the proof of Proposition 2.26.

⇤

Proof of Proposition 2.28

In a setting with transfers,

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

= ynoagg + Ne

h

bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

� n
N � n

⇣

k� bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘⌘

�

,

so

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

= ynoagg

+
N2

e

N � n



bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

� kn
N

�

with M
⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

=
dYagg((I�Ldiag(b))�1,N,n,0)

de

.

In a setting with stimulus,

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

= ynoagg + Ne

bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

and M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

=
dYagg((I�Ldiag(b))�1,N,n,1)

de

. ⇤
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Proof of Proposition 2.29

From the expressions for Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

and

M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

we see that

Pr
h

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

� ynoagg
i

= Pr
h

M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

� 0
i

= 1

for every n 2 {1, . . . ,N � 1} if and only if

Pr
h

bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

� 0
i

= 1.

Now, Pr
h

bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

� 0
i

= 1 for every n 2 {1, . . . ,N � 1} if

and only if d�
w

⇣

(I� Ldiag (b))�1
⌘

� 0. Since I� Ldiag (b) is an M-matrix with

1 > r (Ldiag (b)), I� Ldiag (b) is inverse-positive which makes

d�
w

⇣

(I� Ldiag (b))�1
⌘

� 0. ⇤

Proof of Proposition 2.30

In general, the vector of average weighted in-degrees is

h

d�
w

⇣

(I� Ldiag (b))�1
⌘iT

=
1
N
1T (I� Ldiag (b))�1 .

Setting L = I, I� Ldiag (b) = diag (1� b) and (I� Ldiag (b))�1 =

diag
✓

1
1�b1

· · · 1
1�bN

◆

; the expression for d�
w

⇣

(I� Ldiag (b))�1
⌘

then follows.

⇤

Proof of Proposition 2.31

We first demonstrate the following: If b1 = · · · = bN ⌘ b, then both GDP and

the corresponding economic multiplier are invariant to configuration. Suppose
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that b1 = · · · = bN ⌘ b. Then diag (b) = bI. 1T (I� Ldiag (b)) = 1T (I� bL) =

(1� b) 1T, so 1T (I� Ldiag (b)) (I� Ldiag (b))�1 = (1� b) 1T (I� Ldiag (b))�1

and 1
1�b

1T = 1T (I� Ldiag (b))�1. Therefore,
h

d�
w

⇣

(I� Ldiag (b))�1
⌘iT

=

1
N

1
1�b

1T and k = 1
1�b

. bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

= n
N

1
1�b

with probability

1, and we obtain the expressions for Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

,

M
⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

, Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

, and

M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

.

We next demonstrate the following: If both GDP and the corresponding

economic multiplier are invariant to configuration, then b1 = · · · = bN ⌘ b. Sup-

pose that both GDP and the corresponding economic multiplier are invariant to

configuration. If Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

, M
⇣

(I� Ldiag (b))�1 ,N, n, 0
⌘

,

Yagg

⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

, and M
⇣

(I� Ldiag (b))�1 ,N, n, 1
⌘

are invariant

to configuration, then bFavg
⇣

(I� Ldiag (b))�1 ,N, n
⌘

is invariant to configuration.

We must then have d�
w

⇣

(I� Ldiag (b))�1
⌘

= k
N1, or equivalently,

1T (I� Ldiag (b))�1 = k1T. It follows that 1T (I� Ldiag (b))�1 (I� Ldiag (b)) =

k1T (I� Ldiag (b)), so 1T (I� Ldiag (b)) = 1
k1

T. In general, 1T (I� Ldiag (b)) =
✓

1� b1 · · · 1� bN

◆

by the column-stochasticity of L. For 1T (I� Ldiag (b)) =

1
k1

T, we must have b1 = · · · = bN ⌘ b, and we then have N (1� b) = Nk, or

equivalently, k = 1
1�b

. ⇤
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Appendix C

Appendix to Chapter 3

C.1 Proofs

Proof of Proposition 3.1

EPi (wi, L, `) = E
⇥

wT
i d B (L, `)

⇤

, where B (L, `) is a random vector whose elements

are Bj ⇠ Bern
⇣

`
L

⌘

, j 2 {1, . . . , L} and 1Twi = ki. Therefore,

EPi (wi, L, `) = dE ([wi]1 B1 + · · ·+ [wi]L BL) = d

L

Â
j=1

[wi]j EBj = dki
`
L
.

EPagg
�

wagg, L, `
�

= E
h

wT
agg d B (L, `)

i

, where 1Twagg = kagg. Therefore,

EPagg
�

wagg, L, `
�

= dE
�⇥

wagg
⇤

1 B1 + · · ·+ ⇥wagg
⇤

L BL
�

= d

L

Â
j=1

⇥

wagg
⇤

j EBj

= dkagg
`
L
. ⇤
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Proof of Proposition 3.2

VarPi (wi, L, `) = Var
⇥

wT
i d B (L, `)

⇤

, where B (L, `) is a random vector whose

elements are Bj ⇠ Bern
⇣

`
L

⌘

, j 2 {1, . . . , L}. The random variables Bj ⇠ Bern
⇣

`
L

⌘

are identically distributed but not independent. We then have

VarPi (wi, L, `) = d

2 Var
h

wT
i B (L, `)

i

= d

2 `
L

✓

1� `
L

◆

L
L� 1

LVarWi

from Theorem 1.9 in Chapter 1 and Lemma 2.2 in Chapter 2. Similarly, with

VarPagg
�

wagg, L, `
�

= Var
h

wT
agg d B (L, `)

i

= d

2 Var
h

wT
aggB (L, `)

i

,

we then have VarPagg
�

wagg, L, `
�

= d

2 `
L

⇣

1� `
L

⌘

L
L�1LVarWagg. ⇤

Proof of Proposition 3.3

pi (wi, e, L, `) = wT
i e (L, `) = d Â

j2{1,...,L}
s.t. [e]j=d

[wi]j and

pagg
�

wagg, e, L, `
�

= wT
agge (L, `) = d Â

j2{1,...,L}
s.t. [e]j=d

⇥

wagg
⇤

j .

With d < 0, the Proposition then follows. ⇤

Proof of Proposition 3.4

Pi (wi, L, `) = dX (wi, L, `), where random variable X (wi, L, `) has realizations

x (wi,b, L, `) = wT
i b (L, `), the elements of b (L, `) are either 0 or 1, and 1Tb (L, `) =

`. From Theorem 1.13 in Chapter 1, provided that condition (c) holds, and after

re-labelling some variables, we have that
�

�

�

�

�

�

GX(wi ,L,`)�EX(wi ,L,`)

(VarX(wi ,L,`))
1/2

(t)� J (bw, L, `, t)

�

�

�

�

�

�

< C4 ⇥
L

Â
j=1

�

�

bwj
�

�

5
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with bwj =
[wi]j�EWip

LVarWi
. Now, GPi(wi ,L,`)�EPi(wi ,L,`)

(VarPi(wi ,L,`))
1/2

(t) = GX(wi ,L,`)�EX(wi ,L,`)

(VarX(wi ,L,`))
1/2

(t), so the

Proposition holds for the individual financial institutions i 2 {1, . . . ,M}. Similarly,

Pagg
�

wagg, L, `
�

= dX
�

wagg, L, `
�

, where random variable X
�

wagg, L, `
�

has real-

izations x
�

wagg,b, L, `
�

= wT
aggb (L, `), the elements of b (L, `) are either 0 or 1,

and 1Tb (L, `) = `. Given Theorem 1.13 in Chapter 1, Proposition 3.4 therefore also

holds when approximating the CDF for the entire financial system. ⇤

Proof of Lemma 3.1

wT
i (e (L, `) � p̄) =

✓

[wi]1 [wi]2 · · · [wi]L

◆

b

d

0

B

B

B

B

B

B

B

@

[p̄]1

[p̄]2
...

[p̄]L

1

C

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

B

@

[b (L, `)]1

[b (L, `)]2
...

[b (L, `)]L

1

C

C

C

C

C

C

C

A

=

✓

[wi]1
[wi]2[p̄]2

[p̄]1
· · · [wi]L[p̄]L

[p̄]1

◆

0

B

B

B

B

B

B

B

@

b

d [p̄]1
b

d [p̄]1
...

b

d [p̄]1

1

C

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

B

@

[b (L, `)]1

[b (L, `)]2
...

[b (L, `)]L

1

C

C

C

C

C

C

C

A

=
⇣

b

d [p̄]1
⌘

vTi (1L⇥1 � b (L, `))

= b

d [p̄]1 v
T
i b (L, `) .

To show that wT
agg (e (L, `) � p̄) = b

d [p̄]1 v
T
aggb (L, `), simply replace wi with wagg in

the above derivation. ⇤
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Proof of Proposition 3.5

EPi (wi, L, `) = E
h

b

d [p̄]1 v
T
i B (L, `)

i

, where B (L, `) is a random vector whose ele-

ments are Bj ⇠ Bern
⇣

`
L

⌘

, j 2 {1, . . . , L}, and 1Tvi = ki. Therefore,

EPi (wi, L, `) = b

d [p̄]1 E ([vi]1 B1 + · · ·+ [vi]L BL) = b

d [p̄]1
L

Â
j=1

[vi]j EBj = b

d [p̄]1 ki
`
L
.

Meanwhile, EPagg
�

wagg, L, `
�

= E
h

b

d [p̄]1 v
T
aggB (L, `)

i

, where 1Tvagg = kagg. Then,

EPagg
�

wagg, L, `
�

= b

d [p̄]1 E
�⇥

vagg
⇤

1 B1 + · · ·+ ⇥vagg
⇤

L BL
�

= b

d [p̄]1
L

Â
j=1

⇥

vagg
⇤

j EBj

= b

d [p̄]1 kagg
`
L
. ⇤

Proof of Proposition 3.6

This proposition immediately follows from Proposition 3.2. Simply substitute wi for

vi, wagg for vagg, and d for bd [p̄]1. ⇤

Proof of Proposition 3.7

pi (wi, e, L, `) = wT
i (e (L, `) � p̄) = b

d [p̄]1 v
T
i b (L, `) = b

d [p̄]1 Â
j2{1,...,L}
s.t. [b]j=1

[vi]j , and

pagg
�

wagg, e, L, `
�

= wT
agg (e (L, `) � p̄) = b

d [p̄]1 v
T
aggb (L, `) = b

d [p̄]1 Â
j2{1,...,L}
s.t. [b]j=1

⇥

vagg
⇤

j .

With bd < 0, the Proposition then follows. ⇤

Proof of Proposition 3.8

This proposition follows from Proposition 3.4. Set Pi (wi, L, `) = b

d [p̄]1 X (vi, L, `),

where random variable X (vi, L, `) has realizations x (vi,b, L, `) = vTi b (L, `). Simi-
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larly, set Pagg
�

wagg, L, `
�

= b

d [p̄]1 X
�

vagg, L, `
�

, where random variable X
�

vagg, L, `
�

has realizations x
�

vagg,b, L, `
�

= vTaggb (L, `). ⇤

Proof of Proposition 3.9

First method of proof: Define
�

sj (d)
 L!
j=1 as the family of all possible permutations of

the elements in d. Then,

EPi (wi, d) =
1
L!

L!

Â
j=1

wT
i sj (d)

=
1
L!

L!

Â
j=1

L

Â
m=1

[wi]m
⇥

sj (d)
⇤

m

=
L

Â
m=1

[wi]m

"

1
L!

L!

Â
j=1

⇥

sj (d)
⇤

m

#

=
L

Â
m=1

[wi]m

"

1
L!

L

Â
n=1

(L� 1)! [d]n

#

=
L

Â
m=1

[wi]m

"

1
L

L

Â
n=1

[d]n

#

=

✓

1Td

L

◆

ki.

Substituting wi for wagg, EPagg
�

wagg, d
�

=
⇣

1Td
L

⌘

kagg. ⇤

Second method of proof: EPi (wi, d) = E
⇥

wT
i D
⇤

, where D is an L⇥ 1 random

vector whose elements are Dj, j 2 {1, . . . , L}. The random variables D1, . . . ,DL are
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identically distributed, with the corresponding CDF GDj (t) =
1
L ÂL

m=1 1[d]mt. Then,

EPi (wi, d) = E ([wi]1 D1 + · · ·+ [wi]L DL)

=
L

Â
j=1

[wi]j EDj

=

✓

1Td

L

◆ L

Â
j=1

[wi]j

=

✓

1Td

L

◆

ki.

Substituting wi for wagg, EPagg
�

wagg, d
�

=
⇣

1Td
L

⌘

kagg. ⇤

Proof of Proposition 3.10

VarPagg
�

wagg, d
�

= Var
⇣

wT
aggD

⌘

= Var
�⇥

wagg
⇤

1 D1 + · · ·+ ⇥wagg
⇤

L DL
�

=
L

Â
j=1

Var
⇣

⇥

wagg
⇤

j Dj

⌘

+
L

Â
j=1

L

Â
m=1
j 6=m

Cov
⇣

⇥

wagg
⇤

j Dj,
⇥

wagg
⇤

m Dm

⌘

=
L

Â
j=1

⇣

⇥

wagg
⇤

j

⌘2
VarDj +

L

Â
j=1

L

Â
m=1
j 6=m

⇥

wagg
⇤

j
⇥

wagg
⇤

m Cov
�

Dj,Dm
�

=
�

VarDj
�

L

Â
j=1

⇣

⇥

wagg
⇤

j

⌘2
+
�

E
⇥

DjDm
⇤� �EDj

�

(EDm)
�

L

Â
j=1

L

Â
m=1
j 6=m

⇥

wagg
⇤

j
⇥

wagg
⇤

m .

We would like to find a simple expression to replace
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ÂL
j=1 ÂL

m=1
j 6=m

⇥

wagg
⇤

j
⇥

wagg
⇤

m. Note the following:

VarWagg =
1
L

L

Â
j=1

 

⇥

wagg
⇤

j �
ÂL

m=1
⇥

wagg
⇤

m
L

!2

=
1
L

0

@

L

Â
j=1

⇣

⇥

wagg
⇤

j

⌘2 � 1
L

 

L

Â
j=1

⇥

wagg
⇤

j

!2
1

A

=
1
L

0

B

@

L

Â
j=1

⇣

⇥

wagg
⇤

j

⌘2 � 1
L

0

B

@

L

Â
j=1

⇣

⇥

wagg
⇤

j

⌘2
+

L

Â
j=1

L

Â
m=1
j 6=m

⇥

wagg
⇤

j
⇥

wagg
⇤

m

1

C

A

1

C

A

=
1
L
L� 1
L

2

6

4

L

Â
j=1

⇣

⇥

wagg
⇤

j

⌘2 � 1
L� 1

L

Â
j=1

L

Â
m=1
j 6=m

⇥

wagg
⇤

j
⇥

wagg
⇤

m

3

7

5

.

Therefore,

L

Â
j=1

L

Â
m=1
j 6=m

⇥

wagg
⇤

j
⇥

wagg
⇤

m = (L� 1)
L

Â
j=1

⇣

⇥

wagg
⇤

j

⌘2 � L2 VarWagg,

and

VarPagg
�

wagg, d
�

=
�

VarDj
�

L

Â
j=1

⇣

⇥

wagg
⇤

j

⌘2

+
�

E
⇥

DjDm
⇤� �EDj

�

(EDm)
�

"

(L� 1)
L

Â
j=1

⇣

⇥

wagg
⇤

j

⌘2 � L2 VarWagg

#

.

To compute VarPi (wi, d) for i 2 {1, . . . ,M}, replace wagg with wi, and

replace Wagg with Wi. ⇤

Proof of Proposition 3.11

pi (wi, e, d) = wT
i e (d) and pagg

�

wagg, e, d
�

= wT
agge (d). The elements in the

multisets
�

w̃j
 L
j=1,

�

x̃j
 L
j=1, and

�

d̃j
 L
j=1 are real-valued and weakly increasing with
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index. By the rearrangement inequality,

w̃Ld̃1 + w̃L�1d̃2 + · · ·+ w̃1d̃L

 w̃
s(1)d̃1 + w̃

s(2)d̃2 + · · ·+ w̃
s(L)d̃L  w̃1d̃1 + w̃2d̃2 + · · ·+ w̃Ld̃L

and

x̃Ld̃1 + x̃L�1d̃2 + · · ·+ x̃1d̃L

 x̃
s(1)d̃1 + x̃

s(2)d̃2 + · · ·+ x̃
s(L)d̃L  x̃1d̃1 + x̃2d̃2 + · · ·+ x̃Ld̃L

for all possible permutations w̃
s(1), w̃s(2), . . . , w̃s(L) of elements w̃1, w̃2, . . . , w̃L, and

for all possible permutations x̃
s(1), x̃s(2), . . . , x̃s(L) of elements x̃1, x̃2, . . . , x̃L. ⇤
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Proof of Lemma 3.2

wT
i

⇣

e
⇣

bd
⌘

� p̄
⌘

=

✓

[wi]1 [wi]2 · · · [wi]L

◆

0

B

B

B

B

B

B

B

B

@

h

e
⇣

bd
⌘i

1
h

e
⇣

bd
⌘i

2
...

h

e
⇣

bd
⌘i

L

1

C

C

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

B

@

[p̄]1

[p̄]2
...

[p̄]L

1

C

C

C

C

C

C

C

A

=

✓

[wi]1 [wi]2 · · · [wi]L

◆

0

B

B

B

B

B

B

B

B

@

[p̄]1
h

e
⇣

bd
⌘i

1

[p̄]2
h

e
⇣

bd
⌘i

2
...

[p̄]L
h

e
⇣

bd
⌘i

L

1

C

C

C

C

C

C

C

C

A

=

✓

[wi]1
[wi]2[p̄]2

[p̄]1
· · · [wi]L[p̄]L

[p̄]1

◆

0

B

B

B

B

B

B

B

B

@

h

e
⇣

bd
⌘i

1
h

e
⇣

bd
⌘i

2
...

h

e
⇣

bd
⌘i

L

1

C

C

C

C

C

C

C

C

A

[p̄]1

= [p̄]1 v
T
i e
⇣

bd
⌘

.

To show that wT
agg

⇣

e
⇣

bd
⌘

� p̄
⌘

= [p̄]1 v
T
agge

⇣

bd
⌘

, simply replace wi with wagg in the

above derivation. ⇤
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Proof of Proposition 3.12

Following the first method of proof in Proposition 3.9, define
n

sj

⇣

bd
⌘oL!

j=1
as the

family of all possible permutations of the elements in bd. Then,

EPi

⇣

wi, bd
⌘

=
1
L!

L!

Â
j=1

[p̄]1 v
T
i sj

⇣

bd
⌘

= [p̄]1
1
L!

L!

Â
j=1

vTi sj

⇣

bd
⌘

= [p̄]1

 

1T bd
L

!

ki.

Substituting wi for wagg, EPagg

⇣

wagg, bd
⌘

= [p̄]1
⇣

1T bd
L

⌘

kagg. ⇤

Proof of Proposition 3.13

VarPi

⇣

wi, bd
⌘

= Var
⇣

[p̄]1 v
T
i
bD
⌘

= ([p̄]1)
2 Var

⇣

vTi bD
⌘

and

VarPagg

⇣

wagg, bd
⌘

= Var
⇣

[p̄]1 v
T
aggbD

⌘

= ([p̄]1)
2 Var

⇣

vTaggbD
⌘

.

To compute Var
⇣

vTi bD
⌘

, we substitutewi with vi and D with bD in Proposition 3.10. To

compute Var
⇣

vTaggbD
⌘

, we substitute wagg with vagg and D with bD in Proposition 3.10.

This Proposition then follows. ⇤

Proof of Proposition 3.14

For all i 2 {1, . . . ,M},

pi

⇣

wi, e, bd
⌘

= [p̄]1 v
T
i e
⇣

bd
⌘

and pagg

⇣

wagg, e, bd
⌘

= [p̄]1 v
T
agge

⇣

bd
⌘

.

The elements in the multisets
�

ṽj
 L
j=1,

�

x̃j
 L
j=1, and

�

d̃j
 L
j=1 are real-valued and

weakly increasing with index. This Proposition then follows from the rearrangement
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inequality, as detailed in Proposition 3.11. ⇤
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